Re: I copied a problem wrong, so i still need help!!!! LIMIT
Hello, Professor Awesome!
\(\displaystyle 1)\;\;\L\lim_{x\rightarrow-\infty}\frac {\sqrt{7\,+\,2x^4}} {3x\,+\,x^2}\)
Divide top and bottom by
x2.
The numerator is:
.\(\displaystyle \L\frac{\sqrt{7\,+\,2x^4}}{x^2}\:=\:\frac{\sqrt{7\,+\,2x^4}}{\sqrt{x^4}}\:=\:\sqrt{\frac{7\,+\,2x^4}{x^4}}\:=\:\sqrt{\frac{7}{x^4}\,+\,\frac{2x^4}{x^4}}\:=\:\sqrt{\frac{7}{x^4}\,+\,2}\)
The denominator is:
.\(\displaystyle \L\frac{3x\,+\,x^2}{x^2}\:=\:\frac{3x}{x^2}\,+\,\frac{x^2}{x^2}\:=\:\frac{3}{x}\,+\,1\)
The limit is:
.\(\displaystyle \L\lim_{x\to\infty}\left(\frac{\sqrt{\frac{7}{x^4}\,+\,2}}{\frac{3}{x}\,+\,1}\right)\;=\;\frac{\sqrt{0\,+\,2}}{0\,+\,1}\;=\;\sqrt{2}\)
[Edit: pka's too fast for me ... again!]