What is the additive identity? Calling it [math]\begin(pmatrix} e_0 \\ e_1 \\ e_2\end{pmatrix}[/math] we must have $\begin(pmatrix} v_0 \\ v_1 \\ v_2\end{pmatrix}+ \begin(pmatrix} e_0 \\ e_1 \\ e_2\end{pmatrix}= \begin(pmatrix} v_0+e_0+ 4 \\ v_1+ e_1+ 3 \\ v_2+ e_2+ 2\end{pmatrix}= \begin(pmatrix} v_0 \\ v_1 \\ v_2\end{pmatrix}$
so we must have $v_0+ e_0+ 4= v_0$, $v_1+ e_1+ 3= v_1$, $v_2+ e_2+ 2= v_2$. That is, $e_0= -4$, $e_1= -3$, and $e_2= -2$ so the additive identity is $\begin{pmatrix}-4 \\ -3 \\ -2\end{pmatrix}$