BUSTED

Thanks on your effort by the way!
\(\displaystyle \dfrac{4\, \sin\left(8^{\circ}\right)\, \cdot\, \sin\left(52^{\circ}\right)\, \cdot\, \sin\left(428^{\circ}\right)}{4\, \cos^3\left(22^{\circ}\right)\, -\, 3\, \sin\left(68^{\circ}\right)}\, =\, \dfrac{4\, \sin\left(8^{\circ}\right)\, \cdot\, \sin\left(52^{\circ}\right)\, \cdot\, \sin\left(68^{\circ}\right)}{\, \sin\left(68^{\circ}\right)\, (4\, \sin^2\left(68^{\circ}\right)\, -\, 3)}\, \\ \qquad \qquad \qquad \qquad \qquad \qquad \qquad =\, \dfrac{4\, \sin\left(8^{\circ}\right)\, \cdot\, \sin\left(52^{\circ}\right)}{4\, (\sin^2\left(68^{\circ}\right)\, -\, \dfrac{3}{4})}\, =\, \dfrac{\sin\left(8^{\circ}\right)\, \sin\left(52^{\circ}\right)}{\sin^2\left(68^{\circ}\right)\, -\, \sin^2\left(60^{\circ}\right)} \qquad \qquad \color{red}{\sin(\alpha)\, - \sin(\beta)\, =\, 2\, \cos(\dfrac{\alpha\, +\, \beta}{2})\, \sin(\dfrac{\alpha\, -\, \beta}{2})}\, \\ \qquad \qquad \qquad \qquad \qquad \qquad \qquad =\, \dfrac{\sin\left(8^{\circ}\right)\, \sin\left(52^{\circ}\right)}{(\sin\left(68^{\circ}\right)\, -\, \sin\left(60^{\circ}\right)\, )(\sin\left(68^{\circ}\right)\, +\, \sin\left(60^{\circ}\right)\, )}\qquad \qquad \color{red}{\sin(\alpha)\, +\, \sin(\beta)\, =\, 2\, \sin(\dfrac{\alpha\, +\, \beta}{2})\, \cos(\dfrac{\alpha\, -\, \beta}{2})} \\ \qquad \qquad \qquad \qquad \qquad \qquad \qquad =\, \dfrac{\sin\left(8^{\circ}\right)\, \sin\left(52^{\circ}\right)}{2\, \cos\left(64^{\circ}\right)\, \sin\left(4^{\circ}\right)\, 2\, \sin\left(64^{\circ}\right)\, \cos\left(4^{\circ}\right)} \\ \qquad \qquad \qquad \qquad \qquad \qquad \qquad =\, \dfrac{\sin\left(8^{\circ}\right)\, \sin\left(52^{\circ}\right)}{\sin\left(128^{\circ}\right)\, \sin\left(8^{\circ}\right)} \qquad \qquad \color{red}{\sin(2\, \alpha)\, =\, 2\, \sin(\alpha)\, \cos(\alpha)} \\ \qquad \qquad \qquad \qquad \qquad \qquad \qquad =\, \dfrac{\sin\left(8^{\circ}\right)\, \sin\left(52^{\circ}\right)}{\, \sin\left(52^{\circ}\right)\, \sin\left(8^{\circ}\right)}\, =\, 1\, \)