i'm need to find the general solution for matrix

logistic_guy

Full Member
Joined
Apr 17, 2024
Messages
588
here is the question

Find the general solution of  X=[4060050410100302]X\displaystyle \ \bold{X}' = \begin{bmatrix}-4 & 0 & 6 & 0 \\ 0 & -5 & 0 & -4 \\ -1 & 0 & 1 & 0 \\ 0 & 3 & 0 & 2 \end{bmatrix}\bold{X} .

Hint: X=eAtC\displaystyle \bold{X} = e^{\bold{A}t}\bold{C}.


my attemb
i don't never solve 4 rows matrix
 
Find the general solution of  X=[4060050410100302]X\displaystyle \ \bold{X}' = \begin{bmatrix}-4 & 0 & 6 & 0 \\ 0 & -5 & 0 & -4 \\ -1 & 0 & 1 & 0 \\ 0 & 3 & 0 & 2 \end{bmatrix}\bold{X} . Hint: X=eAtC\displaystyle \bold{X} = e^{\bold{A}t}\bold{C}.
Can you explain what general solution means?
The matrix [4060050410100302]\begin{bmatrix}-4 & 0 & 6 & 0 \\ 0 & -5 & 0 & -4 \\ -1 & 0 & 1 & 0 \\ 0 & 3 & 0 & 2 \end{bmatrix} is a 4×44\times 4 thus X\bf{X} a 4×k4\times k
Now I have no idea what eAte^{\bold{A}t} or C\bf{C} mean.
Please help us clarify the terms.
 
Last edited:
Can you explain what general solution means?
The matrix [4060050410100302]\begin{bmatrix}-4 & 0 & 6 & 0 \\ 0 & -5 & 0 & -4 \\ -1 & 0 & 1 & 0 \\ 0 & 3 & 0 & 2 \end{bmatrix} is a 4×44\times 4 thus X\bf{X} a 4×k4\times k
Now I have no idea what eAte^{\bold{A}t} or C\bf{C} mean.
Please help us clarify the terms.
thank

A=[4060050410100302]\displaystyle \bold{A} = \begin{bmatrix}-4 & 0 & 6 & 0 \\ 0 & -5 & 0 & -4 \\ -1 & 0 & 1 & 0 \\ 0 & 3 & 0 & 2 \end{bmatrix}

C=[c1c2c3c4]\displaystyle \bold{C} = \begin{bmatrix}c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix}

this eAt\displaystyle e^{\bold{A}t} i don't understand what this

the general solution

x(t)=c1x1(t)+c2x2(t)+c3x3(t)+c4x4(t)\displaystyle x(t) = c_1x_1(t) + c_2x_2(t) + c_3x_3(t) + c_4x_4(t)
y(t)=c1y1(t)+c2y2(t)+c3y3(t)+c4y4(t)\displaystyle y(t) = c_1y_1(t) + c_2y_2(t) + c_3y_3(t) + c_4y_4(t)
z(t)=c1z1(t)+c2z2(t)+c3z3(t)+c4z4(t)\displaystyle z(t) = c_1z_1(t) + c_2z_2(t) + c_3z_3(t) + c_4z_4(t)
h(t)=c1h1(t)+c2h2(t)+c3h3(t)+c4h4(t)\displaystyle h(t) = c_1h_1(t) + c_2h_2(t) + c_3h_3(t) + c_4h_4(t)
 
The main purpose of this thread is to show the OP how to get eAte^{\bold{A}t} which he has written it as ePte^{\bold{P}t}. The OP has not replied to this thread since yesterday and the only thing that I can think of is that he is having difficulties of accessing this math website as it happened to me before. (Or he got what he wanted from somewhere else.)

For the sake of completeness, I will show the method in this post. To find eAte^{\bold{A}t}, you need two matrices, A\bold{A} our main matrix and I\bold{I} the identity matrix. You also need a little skill in finding inverse matrices as well as finding inverse Laplace Transform. You don't need to be super in inverse Laplace Transform as everything you need is available in the inverse Laplace Transform table.

A=[62210] \displaystyle \bold{A} = \begin{bmatrix}-6 & 2 \\-2 & -10 \end{bmatrix} \ and  I=[1001] \displaystyle \ \bold{I} = \begin{bmatrix}1 & 0 \\ 0 & 1 \end{bmatrix} \

The first step is to solve this matrix:

sIAs\bold{I} - \bold{A}

where ss is the parameter of the Laplace Transform.

sIA=s[1001][62210]=[s00s]+[62210]=[s+622s+10]s\bold{I} - \bold{A} = \displaystyle s\begin{bmatrix}1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix}-6 & 2 \\-2 & -10 \end{bmatrix} = \displaystyle \begin{bmatrix}s & 0 \\ 0 & s \end{bmatrix} + \begin{bmatrix}6 & -2 \\2 & 10 \end{bmatrix} = \begin{bmatrix} s+ 6 & -2 \\2 & s + 10 \end{bmatrix}

The next step is to find the inverse of the matrix above:

(sIA)1=[s+10s2+16s+642s2+16s+642s2+16s+64s+6s2+16s+64]=[s+10(s+8)22(s+8)22(s+8)2s+6(s+8)2]\displaystyle (s\bold{I} - \bold{A})^{-1} = \begin{bmatrix}\frac{s + 10}{s^2 + 16s + 64} & \frac{2}{s^2 + 16s + 64} \\[7pt] \frac{-2}{s^2 + 16s + 64} & \frac{s + 6}{s^2 + 16s + 64} \end{bmatrix} = \begin{bmatrix}\frac{s + 10}{(s + 8)^2} & \frac{2}{(s + 8)^2} \\[7pt] \frac{-2}{(s + 8)^2} & \frac{s + 6}{(s + 8)^2} \end{bmatrix}

Now you need to take inverse Laplace Transform of each element of the matrix above. With a little or no manipulation of each element, you can get the inverse Laplace Transform from the table.

And finally, we get what the OP was asking for:

ePt=eAt=[(1+2t)e8t2te8t2te8t(12t)e8t]e^{\bold{P}t} = e^{\bold{A}t} = \begin{bmatrix}(1 + 2t)e^{-8t} & 2te^{-8t} \\[7pt] -2te^{-8t} & (1 - 2t)e^{-8t} \end{bmatrix}
To solve the exponential matrix eAte^{\bold{A}t}, you may want to look at my post #22.
 
To solve the exponential matrix eAte^{\bold{A}t}, you may want to look at my post #22.
i'll copy

sIA=s[1000010000100001][4060050410100302]=[s0000s0000s0000s]+[4060050410100302]\displaystyle s\bold{I} - \bold{A} = s\begin{bmatrix}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix}-4 & 0 & 6 & 0 \\ 0 & -5 & 0 & -4 \\ -1 & 0 & 1 & 0 \\ 0 & 3 & 0 & 2 \end{bmatrix} = \begin{bmatrix}s & 0 & 0 & 0 \\ 0 & s & 0 & 0 \\ 0 & 0 & s & 0 \\ 0 & 0 & 0 & s \end{bmatrix} + \begin{bmatrix}4 & 0 & -6 & 0 \\ 0 & 5 & 0 & 4 \\ 1 & 0 & -1 & 0 \\ 0 & -3 & 0 & -2 \end{bmatrix}

=[s+40600s+50410s10030s2]\displaystyle = \begin{bmatrix}s + 4 & 0 & -6 & 0 \\ 0 & s + 5 & 0 & 4 \\ 1 & 0 & s -1 & 0 \\ 0 & -3 & 0 & s -2 \end{bmatrix}

how to take this inverse?
 
i'll copy

sIA=s[1000010000100001][4060050410100302]=[s0000s0000s0000s]+[4060050410100302]\displaystyle s\bold{I} - \bold{A} = s\begin{bmatrix}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix}-4 & 0 & 6 & 0 \\ 0 & -5 & 0 & -4 \\ -1 & 0 & 1 & 0 \\ 0 & 3 & 0 & 2 \end{bmatrix} = \begin{bmatrix}s & 0 & 0 & 0 \\ 0 & s & 0 & 0 \\ 0 & 0 & s & 0 \\ 0 & 0 & 0 & s \end{bmatrix} + \begin{bmatrix}4 & 0 & -6 & 0 \\ 0 & 5 & 0 & 4 \\ 1 & 0 & -1 & 0 \\ 0 & -3 & 0 & -2 \end{bmatrix}

=[s+40600s+50410s10030s2]\displaystyle = \begin{bmatrix}s + 4 & 0 & -6 & 0 \\ 0 & s + 5 & 0 & 4 \\ 1 & 0 & s -1 & 0 \\ 0 & -3 & 0 & s -2 \end{bmatrix}

how to take this inverse?
The same way you will calculate the inverse of any-other non-singular matrix!!
 
how to take this inverse?
 
I don't think I ever learned this method for ODE systems; I did other things related to the matrix exponent like finding generalized eigenvectors and so forth. Is there an intuition behind using (sIA)1(sI - A)^{-1}? It looks a lot like AλIA - \lambda I. Is this some sort of ss domain eigenspace computation?
 
I don't think I ever learned this method for ODE systems; I did other things related to the matrix exponent like finding generalized eigenvectors and so forth. Is there an intuition behind using (sIA)1(sI - A)^{-1}? It looks a lot like AλIA - \lambda I. Is this some sort of ss domain eigenspace computation?
If you have studied Laplace transform before, it all would make sense to you.

👨‍🦲

It all began when a bald man said that: if x=ceatx = ce^{at} is a solution to x=axx' = ax, then X=eAtC\bold{X} = e^{\bold{A}t}\bold{C} must be a solution to X=AX\bold{X}' = \bold{A}\bold{X}.

He wanted to write eAte^{\bold{A}t} in a different form, so he tried to solve the following initial value problem by Laplace transform:

X=AX,   X(0)=I\bold{X}' = \bold{A}\bold{X}, \ \ \ \bold{X}(0) = \bold{I}

Take the Laplace transform of both sides.

sx(s)X(0)=Ax(s)s\bold{x(s)} - \bold{X}(0) = \bold{A}\bold{x}(s)

Rearrange.

(sA)x(s)=I(s - \bold{A})\bold{x}(s) = \bold{I}

This arrangement is wrong because ss is a scalar and A\bold{A} is a matrix. So we have to multiply ss by I\bold{I} to properly apply ss to each component of the matrix x(s)\bold{x}(s).

Therefore, the correct arrangement is:

(sIA)x(s)=I(s\bold{I} - \bold{A})\bold{x}(s) = \bold{I}

Multiply both sides by (sIA)1(s\bold{I} - \bold{A})^{-1}

x(s)=I(sIA)1=(sIA)1\bold{x}(s) = \bold{I}(s\bold{I} - \bold{A})^{-1} = (s\bold{I} - \bold{A})^{-1}

We already know that:

X(t)=eAt\bold{X}(t) = e^{\bold{A}t}

Then

eAt=L1{x(s)}=L1{(sIA)1}e^{\bold{A}t} = \mathcal{L}^{-1}\{\bold{x}(s)\} = \mathcal{L}^{-1}\{(s\bold{I} - \bold{A})^{-1}\}
 
FWIW: Here is a matrix calculator that swallows even variables as matrix entries:
Example.
 
Last edited:
Top