IMO 2016, class 8 Chapter 5 question 3 Cubes and Cube roots

prat

New member
Joined
Jul 24, 2017
Messages
2
IMO 2016, Chapter 5 question 3

if cuberoot of {3 * [ cuberootof(x) - 1/cuberootof(x)]} =2
then
cuberoot(x) + 1/cuberoot(x) = ???



\(\displaystyle \mbox{3. If }\, \sqrt[3]{3\left(\sqrt[3]{x\,}\, -\, \dfrac{1}{\sqrt[3]{x\,}}\right)\,}\, =\, 2\)

. . .\(\displaystyle \mbox{then find the value of }\, \sqrt[3]{\strut x\,}\, +\, \dfrac{1}{\sqrt[3]{\strut x\,}}\)
 

Attachments

  • math1.jpg
    math1.jpg
    8.5 KB · Views: 4
Last edited by a moderator:
IMO 2016, Chapter 5 question 3

if cuberoot of {3 * [ cuberootof(x) - 1/cuberootof(x)]} =2
then
cuberoot(x) + 1/cuberoot(x) = ???



\(\displaystyle \mbox{3. If }\, \sqrt[3]{3\left(\sqrt[3]{x\,}\, -\, \dfrac{1}{\sqrt[3]{x\,}}\right)\,}\, =\, 2\)

. . .\(\displaystyle \mbox{then find the value of }\, \sqrt[3]{\strut x\,}\, +\, \dfrac{1}{\sqrt[3]{\strut x\,}}\)

If 3[x31x3]3=2thenx3+1x3=?\displaystyle \displaystyle{ \sqrt[3]{ 3 * \left[\sqrt[3]{x} - \frac{1}{\sqrt[3]{x}}\right]} =2\\ then\\ \sqrt[3]{x} + \frac{1}{\sqrt[3]{x}} =?}

replace:

y = x^(1/3) then you got

y - (1/y) = 8/3

use:

(a + b)^2 = (a-b)^2 + 4ab

...... continue....
 
Last edited by a moderator:
Thank you

If 3[x31x3]3=2thenx3+1x3=?\displaystyle \displaystyle{ \sqrt[3]{ 3 * \left[\sqrt[3]{x} - \frac{1}{\sqrt[3]{x}}\right]} =2\\ then\\ \sqrt[3]{x} + \frac{1}{\sqrt[3]{x}} =?}

replace:

y = x^(1/3) then you got

y - (1/y) = 8/3

use:

(a + b)^2 = (a-b)^2 + 4ab

...... continue....

Thank you very much for this quick and detailed answer.
I was just missing that ab can be ignored here as they both are reciprocal
 
8/3, do you see why?

That is not the answer. That is what one-third of what the radicand equals.

In other words, that is what
cbrt(x) - 1/cbrt(x) equals.


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -


Anyways, here's another method.

3[x31x3]3=2\displaystyle \displaystyle{ \sqrt[3]{3 \cdot \left[\sqrt[3]{x} - \frac{1}{\sqrt[3]{x}}\right]}} = 2

If we cube each side, we get:

3[x31x3]=8\displaystyle \displaystyle{3 \cdot \left[\sqrt[3]{x} - \frac{1}{\sqrt[3]{x}}\right]} = 8

Dividing each side by 3, we get:

x31x3=83\displaystyle \displaystyle{\sqrt[3]{x} - \frac{1}{\sqrt[3]{x}}} = \frac{8}{3}

Again, that is not the answer. It is not answering the question. The question asks for a sum. The radicand is three times a difference.


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
If 3[x31x3]3=2thenx3+1x3=?\displaystyle \displaystyle{ \sqrt[3]{ 3 * \left[\sqrt[3]{x} - \frac{1}{\sqrt[3]{x}}\right]} =2\\ then\\ \sqrt[3]{x} + \frac{1}{\sqrt[3]{x}} =?}

replace:

y = x^(1/3) then you got

y - (1/y) = 8/3

use:

(a + b)^2 = (a-b)^2 + 4ab

...... continue....

Or, multiply both sides by the LCD, 3y, and get a quadratic:

3y23=8y\displaystyle 3y^2 - 3 = 8y

3y28y3=0\displaystyle 3y^2 - 8y - 3 = 0

(3y+1)(y3)=0\displaystyle (3y + 1)(y - 3) = 0

y=x1/3,\displaystyle y = x^{1/3},

so this equation will have two solutions for x after substituting back.


Conclusion:


x3+1x3\displaystyle \sqrt[3]{x} + \frac{1}{\sqrt[3]{x}} will have two distinct solutions (values). I'll leave it to others to do/attempt the work.
 
Last edited:
Thank you, lookagain. I have deleted my post.

Grandpa Bob and I need to find our specs. :oops:
 
\(\displaystyle \mbox{3. If }\, \sqrt[3]{3\left(\sqrt[3]{x\,}\, -\, \dfrac{1}{\sqrt[3]{x\,}}\right)\,}\, =\, 2\)

. . .\(\displaystyle \mbox{then find the value of }\, \sqrt[3]{\strut x\,}\, +\, \dfrac{1}{\sqrt[3]{\strut x\,}}\)
Following on from scraps of previous posts, we make the substitution:

. . . . .\(\displaystyle y\, =\, \sqrt[3]{\strut x\,}\)

Then the given equation becomes:

. . . . .3(y1y)3=2\displaystyle \sqrt[3]{3\, \left(y\, -\, \dfrac{1}{y}\right)\,}\, =\, 2

. . . . .3(y1y)=8\displaystyle 3\, \left(y\, -\, \dfrac{1}{y}\right)\, =\, 8

. . . . .y1y=83\displaystyle y\, -\, \dfrac{1}{y}\, =\, \dfrac{8}{3}

We know that the following are always true:

. . . . .(ab)2=a22ab+b2\displaystyle (a\, -\, b)^2\, =\, a^2\, -\, 2ab\, +\, b^2

. . . . .(a+b)2=a2+2ab+b2\displaystyle (a\, +\, b)^2\, =\, a^2\, +\, 2ab\, +\, b^2

In effect, we have:

. . . . .ab\displaystyle a\, -\, b

...and we want:

. . . . .a+b\displaystyle a\, +\, b

Subtracting the two identities above gives us:

. . . . .(a+b)2(ab)2=4ab\displaystyle (a\, +\, b)^2\, -\, (a\, -\, b)^2 = 4ab

...so:

. . . . .(a+b)2=(ab)2+4ab\displaystyle (a\, +\, b)^2\, =\, (a\, -\, b)^2\, +\, 4ab

Note that, in our case, we have:

. . . . .ab=(y)(1y)=1\displaystyle ab\, =\, (y)\left(\dfrac{1}{y}\right)\, =\, 1

...so the above simplifies as:

. . . . .(a+b)2=649+4\displaystyle (a\, +\, b)^2\, =\, \dfrac{64}{9}\, +\, 4

Simplify, and take the square root of either side. Since they only asked for the value of the sum, there is no need to attempt to back-solve for x. ;)
 
Last edited by a moderator:
Top