Hello, I just tried to solve this equation and would like to see if I am headed towards the correct direction.
cos^2(x)+cos^2(y)=Cos(2x+2y)
=2(cosx)(-sinx)+2(cosy)(-siny)y'=-sin(2x+2y)(2+2y')
=2(cosx)(-sinx)+2(cosy)(-siny)y'=[-2sin(2x+2y)][-2sin(2x+2y)](y')
=2(cosy)(-siny)y'+2sin(2x+2y)y'=-2sin(2x+2y)-2(cosx)(-sinx)
=y'[2(cosx)(-sinx)+2sin(2x+2y)]=-2sin(2x+2y)-2(cosx)(-sinx)
y'=[-2sin(2x+2y)-2(cosx)(-sinx)]/[2(cosx)(-sinx)+2sin(2x+2y)]
Thank you!
cos^2(x)+cos^2(y)=Cos(2x+2y)
=2(cosx)(-sinx)+2(cosy)(-siny)y'=-sin(2x+2y)(2+2y')
=2(cosx)(-sinx)+2(cosy)(-siny)y'=[-2sin(2x+2y)][-2sin(2x+2y)](y')
=2(cosy)(-siny)y'+2sin(2x+2y)y'=-2sin(2x+2y)-2(cosx)(-sinx)
=y'[2(cosx)(-sinx)+2sin(2x+2y)]=-2sin(2x+2y)-2(cosx)(-sinx)
y'=[-2sin(2x+2y)-2(cosx)(-sinx)]/[2(cosx)(-sinx)+2sin(2x+2y)]
Thank you!