Infinite Limits, \sqrt{9x^2 + x} - 3x

Pontifex

New member
Joined
Jun 7, 2009
Messages
17
\(\displaystyle \buildrel Lim\over{x\to\infty} \sqrt{9x^2 + x} - 3x\)

(If there's a better way to denote the limit, please let me know; I've only just started playing around with TeX.)

Steps:

\(\displaystyle \buildrel Lim\over{x\to\infty} \sqrt{9x^2 + x} + \buildrel Lim\over{x\to\infty} - 3x\)
\(\displaystyle \sqrt{\buildrel Lim\over{x\to\infty} 9x^2 + x} + \buildrel Lim\over{x\to\infty} - 3x\) [Root Law]
\(\displaystyle (\sqrt{\buildrel Lim\over{x\to\infty} 9x^2 + x} + \buildrel Lim\over{x\to\infty} - 3x)*(1/x)\)
\(\displaystyle \sqrt{\buildrel Lim\over{x\to\infty} 9 + 1/x} + \buildrel Lim\over{x\to\infty} - 3\)
9+0+3\displaystyle \sqrt{9 + 0} + - 3 [Taking the limit]
0\displaystyle 0

The book claims 1/6\displaystyle 1/6, but I'm not sure where they'd get that answer.

--Pontifex
 
Make sure to read the theorems to make sure you're applying them correctly. Sometimes intuition is dead wrong.

Try this:

limx9x2+x3x19x2+x+3x9x2+x+3x\displaystyle \lim_{x \to \infty} \frac{\sqrt{9x^2+x} - 3x}{1} \cdot \frac{\sqrt{9x^2+x}+3x}{\sqrt{9x^2+x}+3x}

The top will simplfy immensely.

Now consider dividing the top and bottom by x=x2\displaystyle x=\sqrt{x^2}. You may assume x>0 with this division because it is approaching positive infinity.

With a little more algebra you'll end up with:

limx19+1x+3\displaystyle \lim_{x \to \infty} \frac{1}{\sqrt{9 + \frac{1}{x}}+3}
 
Pontifex said:
\(\displaystyle \buildrel Lim\over{x\to\infty} \sqrt{9x^2 + x} - 3x\)

Steps:

\(\displaystyle \buildrel Lim\over{x\to\infty} \sqrt{9x^2 + x} + \buildrel Lim\over{x\to\infty} - 3x\) This rule only works if the limits exist.
\(\displaystyle (\sqrt{\buildrel Lim\over{x\to\infty} 9x^2 + x} + \buildrel Lim\over{x\to\infty} - 3x)*(1/x)\) Why on earth would it be valid to multiply by 1/x ??

Try this :
\(\displaystyle 1 = \buildrel lim\over{x\to\infty} 1\)
\(\displaystyle = \buildrel lim\over{x\to\infty} (x+1-x)\)
\(\displaystyle = \buildrel lim\over{x\to\infty} (x+1)-\buildrel lim\over{x\to\infty} x\)
\(\displaystyle = (\buildrel lim\over{x\to\infty} (x+1)-\buildrel lim\over{x\to\infty} x)*(1/x)\)
\(\displaystyle = \buildrel lim\over{x\to\infty} 1 + 1/x + \buildrel Lim\over{x\to\infty} 1\)
=1+01\displaystyle = 1 + 0 - 1
=0\displaystyle = 0
 
BigGlenntheHeavy said:
Good show, daon, as I was stumped on this one until I observed your analysis.

Thanks. I had actually started taking a different route before I saw this. Consequently this leads to the following, however unhelpful it may prove in general, closed answer:

Suppsose the following:

(1) We are taking the limit of ax2+bx+cdx\displaystyle \sqrt{ax^2+bx+c} - dx
(2) d2=a\displaystyle d^2=a

For this limit to be real and exist, note we must have a>0. (2) ensures this, so I do not include it as an assumption.

Then:

L=limxax2+bx+cdx=b2d\displaystyle L = \lim_{x \to \infty} \sqrt{ax^2+bx+c}-dx = \frac{b}{2d}

..

Now, what happens if we replace (2) with: (2') a>0\displaystyle a>0?

We get an infinite limit, as this method reduces the limit to:

L=limx(ad2)x+b+cxa+bx+cx2+d\displaystyle L = \lim_{x \to \infty} \frac{(a-d^2)x+b+\frac{c}{x}}{\sqrt{a+\frac{b}{x}+\frac{c}{x^2}}+d}

If a>d2\displaystyle a>d^2 then L=\displaystyle L = \infty
If a<d2\displaystyle a<d^2 then L=\displaystyle L = -\infty
If a=d2\displaystyle a=d^2 then we get the above result L=b2d\displaystyle L = \frac{b}{2d}
 
DrMike said:
Pontifex said:
\(\displaystyle \buildrel Lim\over{x\to\infty} \sqrt{9x^2 + x} - 3x\)

Steps:

\(\displaystyle \buildrel Lim\over{x\to\infty} \sqrt{9x^2 + x} + \buildrel Lim\over{x\to\infty} - 3x\) This rule only works if the limits exist.
\(\displaystyle (\sqrt{\buildrel Lim\over{x\to\infty} 9x^2 + x} + \buildrel Lim\over{x\to\infty} - 3x)*(1/x)\) Why on earth would it be valid to multiply by 1/x ??

I can has stupid newbie mistake, from time to time. >_>
 
daon said:
Make sure to read the theorems to make sure you're applying them correctly. Sometimes intuition is dead wrong.

Doh! I re-read that one, thanks for the catch. I still treat infinity as a number from time to time instead of that "always increasing" idea.

Thanks!
 
Basic Rule for ifinite limits....


letF(x)=Axn/Bxm\displaystyle let F(x) = Ax^n/Bx^m


if n = m

LimitF(X)=A/B\displaystyle Limit F(X) = A/B



if n < m

LimitF(X)=Infinity\displaystyle Limit F(X) = Infinity




if n > m

LimitF(X)=0\displaystyle Limit F(X) = 0
 
Top