\(\displaystyle \buildrel Lim\over{x\to\infty} \sqrt{9x^2 + x} - 3x\)
(If there's a better way to denote the limit, please let me know; I've only just started playing around with TeX.)
Steps:
\(\displaystyle \buildrel Lim\over{x\to\infty} \sqrt{9x^2 + x} + \buildrel Lim\over{x\to\infty} - 3x\)
\(\displaystyle \sqrt{\buildrel Lim\over{x\to\infty} 9x^2 + x} + \buildrel Lim\over{x\to\infty} - 3x\) [Root Law]
\(\displaystyle (\sqrt{\buildrel Lim\over{x\to\infty} 9x^2 + x} + \buildrel Lim\over{x\to\infty} - 3x)*(1/x)\)
\(\displaystyle \sqrt{\buildrel Lim\over{x\to\infty} 9 + 1/x} + \buildrel Lim\over{x\to\infty} - 3\)
9+0+−3 [Taking the limit]
0
The book claims 1/6, but I'm not sure where they'd get that answer.
--Pontifex
(If there's a better way to denote the limit, please let me know; I've only just started playing around with TeX.)
Steps:
\(\displaystyle \buildrel Lim\over{x\to\infty} \sqrt{9x^2 + x} + \buildrel Lim\over{x\to\infty} - 3x\)
\(\displaystyle \sqrt{\buildrel Lim\over{x\to\infty} 9x^2 + x} + \buildrel Lim\over{x\to\infty} - 3x\) [Root Law]
\(\displaystyle (\sqrt{\buildrel Lim\over{x\to\infty} 9x^2 + x} + \buildrel Lim\over{x\to\infty} - 3x)*(1/x)\)
\(\displaystyle \sqrt{\buildrel Lim\over{x\to\infty} 9 + 1/x} + \buildrel Lim\over{x\to\infty} - 3\)
9+0+−3 [Taking the limit]
0
The book claims 1/6, but I'm not sure where they'd get that answer.
--Pontifex