J jbstahley New member Joined Jan 28, 2007 Messages 3 Jan 29, 2007 #1 integral f(x)dx from 0 to 2pi, where f(x) = pi^2 if 0<=x<pi and 2pi^2-x^2 if pi^2<=x<=2pi Help is very much appreciated. ~ Jessica
integral f(x)dx from 0 to 2pi, where f(x) = pi^2 if 0<=x<pi and 2pi^2-x^2 if pi^2<=x<=2pi Help is very much appreciated. ~ Jessica
A arthur ohlsten Full Member Joined Feb 20, 2005 Messages 847 Jan 30, 2007 #2 If I understand this correctly integral f[x]dx from 0 to 2pi f[x]=pi^2 a constant pi^2 Int from 0 to 2pi dx pi^2[x] evaluated at [2pi.0] [pi^2][2pi-0] 2 pi^3 answer Arthur
If I understand this correctly integral f[x]dx from 0 to 2pi f[x]=pi^2 a constant pi^2 Int from 0 to 2pi dx pi^2[x] evaluated at [2pi.0] [pi^2][2pi-0] 2 pi^3 answer Arthur
S soroban Elite Member Joined Jan 28, 2005 Messages 5,584 Jan 30, 2007 #3 Re: More Definite Integrals... Hello, Jessica! I assume that there is a typo in the problem . . . \(\displaystyle \L\int^{\;\;\;\;2\pi}_0\)\(\displaystyle dx\;\) where: \(\displaystyle \:f(x) \:=\:\begin{Bmatrix}\pi^2 & \text{ if }0\,\leq x < \pi \\ 2\pi^2\,-\,x^2 & \text{ if }\pi \leq x \leq 2\pi \end{Bmatrix}\) Click to expand... Just make two integrals . . . \(\displaystyle \L I_1\;=\;\int^{\;\;\;\pi}_0\pi^2\,dx \;=\;\pi^2x\bigg]^{\pi}_0 \;=\;\pi^3\) \(\displaystyle \L I_2\;=\;\int^{\;\;\;2\pi}_{\pi}\left(\pi^2\,-\,x^2\right)\,dx \;=\;\pi^2x\,-\,\frac{1}{3}x^3\bigg]^{2\pi}_{\pi}\) . . \(\displaystyle \L= \;\left(4\pi^3\,-\,\frac{8}{3}\pi^3\right)\,-\,\left(2\pi^3\,-\,\frac{1}{3}\pi^3\right) \;=\;\frac{4}{3}\pi^3\,-\,\frac{5}{3}\pi^2\;=\;-\frac{1}{3}\pi^3\) Answer: \(\displaystyle \L\:I_1\,+\,I_2\;=\;\pi^3\,-\,\frac{1}{3}\pi^3\;=\;\fbox{\frac{2}{3}\pi^3}\)
Re: More Definite Integrals... Hello, Jessica! I assume that there is a typo in the problem . . . \(\displaystyle \L\int^{\;\;\;\;2\pi}_0\)\(\displaystyle dx\;\) where: \(\displaystyle \:f(x) \:=\:\begin{Bmatrix}\pi^2 & \text{ if }0\,\leq x < \pi \\ 2\pi^2\,-\,x^2 & \text{ if }\pi \leq x \leq 2\pi \end{Bmatrix}\) Click to expand... Just make two integrals . . . \(\displaystyle \L I_1\;=\;\int^{\;\;\;\pi}_0\pi^2\,dx \;=\;\pi^2x\bigg]^{\pi}_0 \;=\;\pi^3\) \(\displaystyle \L I_2\;=\;\int^{\;\;\;2\pi}_{\pi}\left(\pi^2\,-\,x^2\right)\,dx \;=\;\pi^2x\,-\,\frac{1}{3}x^3\bigg]^{2\pi}_{\pi}\) . . \(\displaystyle \L= \;\left(4\pi^3\,-\,\frac{8}{3}\pi^3\right)\,-\,\left(2\pi^3\,-\,\frac{1}{3}\pi^3\right) \;=\;\frac{4}{3}\pi^3\,-\,\frac{5}{3}\pi^2\;=\;-\frac{1}{3}\pi^3\) Answer: \(\displaystyle \L\:I_1\,+\,I_2\;=\;\pi^3\,-\,\frac{1}{3}\pi^3\;=\;\fbox{\frac{2}{3}\pi^3}\)