Integral calculator

This is a moderately bad one. I'll give you the steps to get you started and you fill in the blanks.

80(x2+2x+10)2 dx\int \dfrac{80}{(x^2 + 2x + 10)^2} ~ dx
Step 1: Complete the square: x2+2x+10=(x+1)2+9x^2 + 2x + 10 = (x + 1)^2 + 9.

Step 2: Let u=x+1u = x + 1
Step 3: Let u=3 tan(v)u = 3 ~ tan(v).

This gives 1(x2+2x+10)2 dx=127cos2(v) dv\int \dfrac{1}{(x^2 + 2x + 10)^2} ~ dx = \dfrac{1}{27} \int cos^2(v) ~ dv
Fill in the steps and you can take the integration from there.

Let us know if you need more help and show what you've done.

-Dan

Addendum: You could probably do this with partial fractions. I haven't looked at it that way yet.
 
Top