chemENGstudent
New member
- Joined
- Jul 28, 2016
- Messages
- 2
Now substituting the value of [f '(x)]2 with a = 1, b = 2 in the equation (2), we have:
. . . . .\(\displaystyle \begin{align} \displaystyle L\, &=\, \int_1^2\, \sqrt{\strut 1\, +\, \left(\dfrac{1}{2}x\, -\, \dfrac{1}{2x}\right)^2\,}\, dx
\\ \\ &=\, \int_1^2\, \sqrt{\strut \left(\dfrac{x}{2}\, +\, \dfrac{1}{2x}\right)^2\,}\,dx
\\ \\ &=\, \int_1^2\, \left(\dfrac{x}{2}\, +\, \dfrac{1}{2x}\right)\, dx
\\ \\ &=\, \left[\dfrac{x^{1+1}}{2\, \cdot\, 2}\, +\, \dfrac{1}{2}\, \ln(x)\right]_1^2
\\ \\ &=\, \dfrac{3}{4}\, +\, \dfrac{1}{2}\, \ln(2) \end{align}\)
I don't understand how the 1+ disappeared in the square root and the sign changed.
Please help. Thank you!
. . . . .\(\displaystyle \begin{align} \displaystyle L\, &=\, \int_1^2\, \sqrt{\strut 1\, +\, \left(\dfrac{1}{2}x\, -\, \dfrac{1}{2x}\right)^2\,}\, dx
\\ \\ &=\, \int_1^2\, \sqrt{\strut \left(\dfrac{x}{2}\, +\, \dfrac{1}{2x}\right)^2\,}\,dx
\\ \\ &=\, \int_1^2\, \left(\dfrac{x}{2}\, +\, \dfrac{1}{2x}\right)\, dx
\\ \\ &=\, \left[\dfrac{x^{1+1}}{2\, \cdot\, 2}\, +\, \dfrac{1}{2}\, \ln(x)\right]_1^2
\\ \\ &=\, \dfrac{3}{4}\, +\, \dfrac{1}{2}\, \ln(2) \end{align}\)
I don't understand how the 1+ disappeared in the square root and the sign changed.
Please help. Thank you!
Attachments
Last edited by a moderator: