H hrr379 New member Joined Jun 9, 2012 Messages 17 Jun 16, 2012 #1 I know I am doing this wrong. If some one be so kind to point out where I am going wrong? Attachments photo (2).jpg 81.2 KB · Views: 3
D Deleted member 4993 Guest Jun 16, 2012 #2 hrr379 said: I know I am doing this wrong. If some one be so kind to point out where I am going wrong? Click to expand... \(\displaystyle \dfrac{d}{dx}\left [ln|2x+1|\right ] \ = \ \dfrac{1}{2x+1} \ * \ \dfrac{d}{dx}\left [2x+1\right ] \ = \ ??? \)
hrr379 said: I know I am doing this wrong. If some one be so kind to point out where I am going wrong? Click to expand... \(\displaystyle \dfrac{d}{dx}\left [ln|2x+1|\right ] \ = \ \dfrac{1}{2x+1} \ * \ \dfrac{d}{dx}\left [2x+1\right ] \ = \ ??? \)
S soroban Elite Member Joined Jan 28, 2005 Messages 5,584 Jun 16, 2012 #3 Hello, hrr379! Your partial fractions are incorrect . . . I know I am doing this wrong. If someone be so kind to point out where I am going wrong? . . \(\displaystyle \displaystyle\int\frac{2}{2x^2+3x+1}\,dx\) Click to expand... \(\displaystyle \displaystyle\frac{2}{(2x+1)(x+1)} \;=\;\frac{A}{2x+1} + \frac{B}{x+1}\) . . . . . .\(\displaystyle 2 \;=\;A(x+1) + B(2x+1)\) \(\displaystyle x = \text{-}1\!:\quad \overbrace{2 \;=\;B(\text{-}1)}^{\text{Here!}} \quad\Rightarrow\quad B = \text{-}2\) \(\displaystyle x = \text{-}\frac{1}{2}\!: \quad 2 \;=\;A(\frac{1}{2}) \quad\Rightarrow\quad A = 4\) \(\displaystyle \displaystyle\text{Therefore: }\:\frac{2}{(2x+1)(x+1)} \;=\;\frac{4}{2x+1} - \frac{2}{x+1}\) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ Always check your partial fractions before proceeding . . . \(\displaystyle \displaystyle \frac{4}{2x+1} - \frac{2}{x+1} \;=\; \frac{4(x+1) - 2(2x+1)}{(2x+1)(x+1)} \) . . . . . . . . . . . . . .\(\displaystyle \displaystyle=\;\frac{4x+4 - 4x - 2}{(2x+1)(x+1)} \;=\;\frac{2}{(2x+1)(x+1)} \) . . . . . See?
Hello, hrr379! Your partial fractions are incorrect . . . I know I am doing this wrong. If someone be so kind to point out where I am going wrong? . . \(\displaystyle \displaystyle\int\frac{2}{2x^2+3x+1}\,dx\) Click to expand... \(\displaystyle \displaystyle\frac{2}{(2x+1)(x+1)} \;=\;\frac{A}{2x+1} + \frac{B}{x+1}\) . . . . . .\(\displaystyle 2 \;=\;A(x+1) + B(2x+1)\) \(\displaystyle x = \text{-}1\!:\quad \overbrace{2 \;=\;B(\text{-}1)}^{\text{Here!}} \quad\Rightarrow\quad B = \text{-}2\) \(\displaystyle x = \text{-}\frac{1}{2}\!: \quad 2 \;=\;A(\frac{1}{2}) \quad\Rightarrow\quad A = 4\) \(\displaystyle \displaystyle\text{Therefore: }\:\frac{2}{(2x+1)(x+1)} \;=\;\frac{4}{2x+1} - \frac{2}{x+1}\) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ Always check your partial fractions before proceeding . . . \(\displaystyle \displaystyle \frac{4}{2x+1} - \frac{2}{x+1} \;=\; \frac{4(x+1) - 2(2x+1)}{(2x+1)(x+1)} \) . . . . . . . . . . . . . .\(\displaystyle \displaystyle=\;\frac{4x+4 - 4x - 2}{(2x+1)(x+1)} \;=\;\frac{2}{(2x+1)(x+1)} \) . . . . . See?