I can't solve this integral
[FONT=MathJax_Size2]∫[/FONT][FONT=MathJax_Math-italic]D[/FONT][FONT=MathJax_Main]1[/FONT][FONT=MathJax_Main]|[/FONT][FONT=MathJax_Math-italic]x[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Math-italic]y[/FONT][FONT=MathJax_Main]4[/FONT][FONT=MathJax_Main]|[/FONT][FONT=MathJax_Math-italic]a[/FONT][FONT=MathJax_Math-italic]d[/FONT][FONT=MathJax_Math-italic]x[/FONT][FONT=MathJax_Math-italic]d[/FONT][FONT=MathJax_Math-italic]y[/FONT]
with D = { (x, y) | x > 1, and x/(x+1) < y < x }
I can do y^2 = v, but with polar coordinates it comes x^2/(x^2+1) < v <x^2, r^2 cosTh^2 / (1 + r^2cosTh^2) and so on and I cannot solve it!
Could you help me?
Thank you
[FONT=MathJax_Size2]∫[/FONT][FONT=MathJax_Math-italic]D[/FONT][FONT=MathJax_Main]1[/FONT][FONT=MathJax_Main]|[/FONT][FONT=MathJax_Math-italic]x[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Math-italic]y[/FONT][FONT=MathJax_Main]4[/FONT][FONT=MathJax_Main]|[/FONT][FONT=MathJax_Math-italic]a[/FONT][FONT=MathJax_Math-italic]d[/FONT][FONT=MathJax_Math-italic]x[/FONT][FONT=MathJax_Math-italic]d[/FONT][FONT=MathJax_Math-italic]y[/FONT]
with D = { (x, y) | x > 1, and x/(x+1) < y < x }
I can do y^2 = v, but with polar coordinates it comes x^2/(x^2+1) < v <x^2, r^2 cosTh^2 / (1 + r^2cosTh^2) and so on and I cannot solve it!
Could you help me?
Thank you