Q quazzi New member Joined Jan 24, 2007 Messages 3 Jan 24, 2007 #1 The starting example shows u= x-1 du=dx that I get bur then it converts the integral to u^(1/2)*(u+1)du ?? the end result should be in the for of (2U^(5/2))/5 + (2U^(3/2))/3 + C thanks
The starting example shows u= x-1 du=dx that I get bur then it converts the integral to u^(1/2)*(u+1)du ?? the end result should be in the for of (2U^(5/2))/5 + (2U^(3/2))/3 + C thanks
G galactus Super Moderator Staff member Joined Sep 28, 2005 Messages 7,203 Jan 24, 2007 #2 Try this: Let \(\displaystyle \L\\u=\sqrt{x-1}; \;\ u^{2}+1=x; \;\ 2udu=dx\) Sub in appropriately: \(\displaystyle \L\\\int{2u(u^{2}+1)udu=\int{2u^{4}+2u^{2}}du\)
Try this: Let \(\displaystyle \L\\u=\sqrt{x-1}; \;\ u^{2}+1=x; \;\ 2udu=dx\) Sub in appropriately: \(\displaystyle \L\\\int{2u(u^{2}+1)udu=\int{2u^{4}+2u^{2}}du\)
S soroban Elite Member Joined Jan 28, 2005 Messages 5,584 Jan 24, 2007 #3 Hello, quazzi! I'll do it their way . . . \(\displaystyle \L\int x\sqrt{x\,-\,1}\,dx\) Click to expand... They used: \(\displaystyle \,u\:=\:x\,-\,1\;\;\Rightarrow\;\;x\:=\:u\,+\,1\;\;\Rightarrow\;\;dx\:=\:du\) . . And: \(\displaystyle \x\,-\,1)^{\frac{1}{2}}\:=\:u^{\frac{1}{2}}\) Substitute: \(\displaystyle \L\:\int \underbrace{x}_{\downarrow}\,\underbrace{(x\,-\,1)^{\frac{1}{2}}}_{\downarrow}\,\underbrace{dx}_{\swarrow}\) . . . . . . \(\displaystyle \L\:\int(u\,+\,1)\cdot u^{\frac{1}{2}}\cdot du\) We have: \(\displaystyle \L\:\int\left(u^{\frac{3}{2}}\,+\,u^{\frac{1}{2}}\right)\,du\) Then: \(\displaystyle \L\:\frac{2}{5}u^{\frac{5}{2}}\,+\,\frac{2}{3}u^{\frac{3}{2}}\,+\,C\) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ We're not finished . . . We must back-substitute. . . But I always simplify first. Factor: \(\displaystyle \L\:\frac{u^{\frac{3}{2}}}{15}\left(6u\,+\,10\right)\,+\,C\) Replace \(\displaystyle u\) with \(\displaystyle x\,-\,1\) . . \(\displaystyle \L\frac{(x\,-\,1)^{\frac{3}{2}}}{15}\left[6(x\,-\,1)\,+\,10\right]\,+\,C \;=\;\frac{(x\,-\,1)^{\frac{3}{2}}}{15}(6x\,+\,4)\,+\,C\) . . \(\displaystyle \L=\;\frac{2}{15}(x\,-\,1)^{\frac{3}{2}}(3x\,+\,2)\,+\,C\) This is probably the answer at the back of the book. . . They just love to simplify beyond all recognition.
Hello, quazzi! I'll do it their way . . . \(\displaystyle \L\int x\sqrt{x\,-\,1}\,dx\) Click to expand... They used: \(\displaystyle \,u\:=\:x\,-\,1\;\;\Rightarrow\;\;x\:=\:u\,+\,1\;\;\Rightarrow\;\;dx\:=\:du\) . . And: \(\displaystyle \x\,-\,1)^{\frac{1}{2}}\:=\:u^{\frac{1}{2}}\) Substitute: \(\displaystyle \L\:\int \underbrace{x}_{\downarrow}\,\underbrace{(x\,-\,1)^{\frac{1}{2}}}_{\downarrow}\,\underbrace{dx}_{\swarrow}\) . . . . . . \(\displaystyle \L\:\int(u\,+\,1)\cdot u^{\frac{1}{2}}\cdot du\) We have: \(\displaystyle \L\:\int\left(u^{\frac{3}{2}}\,+\,u^{\frac{1}{2}}\right)\,du\) Then: \(\displaystyle \L\:\frac{2}{5}u^{\frac{5}{2}}\,+\,\frac{2}{3}u^{\frac{3}{2}}\,+\,C\) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ We're not finished . . . We must back-substitute. . . But I always simplify first. Factor: \(\displaystyle \L\:\frac{u^{\frac{3}{2}}}{15}\left(6u\,+\,10\right)\,+\,C\) Replace \(\displaystyle u\) with \(\displaystyle x\,-\,1\) . . \(\displaystyle \L\frac{(x\,-\,1)^{\frac{3}{2}}}{15}\left[6(x\,-\,1)\,+\,10\right]\,+\,C \;=\;\frac{(x\,-\,1)^{\frac{3}{2}}}{15}(6x\,+\,4)\,+\,C\) . . \(\displaystyle \L=\;\frac{2}{15}(x\,-\,1)^{\frac{3}{2}}(3x\,+\,2)\,+\,C\) This is probably the answer at the back of the book. . . They just love to simplify beyond all recognition.