Hi
I did a calculation on an integral but i get the wrong answer, but the correct answer is elusive to me in terms of how it got the final term.
This is the workings i did:
. . . . .∫(x+3x)2dx=∫(x+3)2x2dx
Long division gives us:
. . . . .∫(1−(x+3)26x−9)dx
Partial-fraction decomposition gives us:
. . . . .(x+3)26x−9=x+3A+(x+3)2B
. . . . .6x−9=A(x+3)+B
. . . . .6x−9=Ax+(3A+B)
. . . . .6=A
. . . . .−9=3A+B=18+B
. . . . .−27=B
So the integral becomes:
. . . . .∫(1−x+36−(x+3)227)dx
. . . . . . . .=∫1dx−6∫x+31dx−27∫(x+3)21dx
. . . . . . . .=x−6ln∣x+3∣−x+327+C
Actual answer:
. . . . .x−6ln∣∣∣x+3∣∣∣−x+39+C
I cannot see how they get -9 over x+3 but wolfram says its -9 also, so i am clearly making an error here but i cannot see it.
Hope some one can see my error.
I did a calculation on an integral but i get the wrong answer, but the correct answer is elusive to me in terms of how it got the final term.
This is the workings i did:
. . . . .∫(x+3x)2dx=∫(x+3)2x2dx
Long division gives us:
. . . . .∫(1−(x+3)26x−9)dx
Partial-fraction decomposition gives us:
. . . . .(x+3)26x−9=x+3A+(x+3)2B
. . . . .6x−9=A(x+3)+B
. . . . .6x−9=Ax+(3A+B)
. . . . .6=A
. . . . .−9=3A+B=18+B
. . . . .−27=B
So the integral becomes:
. . . . .∫(1−x+36−(x+3)227)dx
. . . . . . . .=∫1dx−6∫x+31dx−27∫(x+3)21dx
. . . . . . . .=x−6ln∣x+3∣−x+327+C
Actual answer:
. . . . .x−6ln∣∣∣x+3∣∣∣−x+39+C
I cannot see how they get -9 over x+3 but wolfram says its -9 also, so i am clearly making an error here but i cannot see it.
Hope some one can see my error.
Last edited by a moderator: