Hi guys, I'm trying to solve some integrals by using the integration by parts method
\(\displaystyle \mbox{a }\, \int\, \left[2x\, \sqrt{2x\,}\, -\, 3\right]\, dx\)
\(\displaystyle \mbox{b }\, \int\, \left[x\,e^{x^2}\right]\, dx\)
\(\displaystyle \mbox{c }\, \int\, \left[x\,e^x\right]\, dx\)
\(\displaystyle \mbox{d }\, \int\, \left[x^3\, e^{2x}\right]\, dx\)
\(\displaystyle \mbox{e }\, \int\, \left[x\, \ln(x\, +\, 1)\right]\, dx\)
\(\displaystyle \mbox{f }\, \int\, \left[x^2\, sen(x)\right]\, dx\)
\(\displaystyle \mbox{g }\, \int\, \left[\tan^2(x)\, \sec(x)\right]\, dx\)
it's been a while since I tried this kind of integrals, I wonder if anyone knows the anwser and the whole procedure.
Thank you in advance
\(\displaystyle \mbox{a }\, \int\, \left[2x\, \sqrt{2x\,}\, -\, 3\right]\, dx\)
\(\displaystyle \mbox{b }\, \int\, \left[x\,e^{x^2}\right]\, dx\)
\(\displaystyle \mbox{c }\, \int\, \left[x\,e^x\right]\, dx\)
\(\displaystyle \mbox{d }\, \int\, \left[x^3\, e^{2x}\right]\, dx\)
\(\displaystyle \mbox{e }\, \int\, \left[x\, \ln(x\, +\, 1)\right]\, dx\)
\(\displaystyle \mbox{f }\, \int\, \left[x^2\, sen(x)\right]\, dx\)
\(\displaystyle \mbox{g }\, \int\, \left[\tan^2(x)\, \sec(x)\right]\, dx\)
it's been a while since I tried this kind of integrals, I wonder if anyone knows the anwser and the whole procedure.
Thank you in advance
Last edited by a moderator: