\(\displaystyle Another \ way:\)
\(\displaystyle \int\frac{x^{3}}{(x^{2}+1)^{1/2}}dx, \ Let \ u \ = \ (x^{2}+1)^{1/2}, \ then \ x^{2} \ = \ u^{2}-1\)
\(\displaystyle and \ du \ = \ \frac{xdx}{u}, \ \implies \ dx \ = \ \frac{udu}{x}\)
\(\displaystyle Hence, \ \int\frac{x^{3}u}{xu}du \ = \ \int x^{2}du \ = \ \int(u^{2}-1)du \ = \ \frac{u^{3}}{3}-u+C\)
\(\displaystyle Resub: \ \frac{(x^{2}+1)^{3/2}}{3}-(x^{2}+1)^{1/2}+C \ = \ \frac{(x^{2}+1)^{3/2}-3(x^{2}+1)^{1/2}}{3}+C\)
\(\displaystyle = \ \frac{(x^{2}+1)^{1/2}[(x^{2}+1)-3]}{3}+C \ = \ \frac{(x^{2}+1)^{1/2}(x^{2}-2)}{3}+C\)
\(\displaystyle Check: \ D_x\bigg[\frac{(x^{2}+1)^{1/2}(x^{2}-2)}{3}+C\bigg] \ = \ \frac{x^{3}}{(x^{2}+1)^{1/2}}, \ a \ good \ exercise \ for \ you.\)