Integration of xarcsin²(x)dx

lazarus44

New member
Joined
Jun 12, 2016
Messages
2
Integration of xarcsin²(x)dx

Hello, i am struggling with this integration, I know how to do either sin²(x)dx or arcsin(x)dx, but not both at the same time.
Could someone point me in the right direction? I would really appreciate it

regards,
lazarus
 
Hello, i am struggling with this integration, I know how to do either sin²(x)dx or arcsin(x)dx, but not both at the same time.
Could someone point me in the right direction? I would really appreciate it

regards,
lazarus

Is your problem:

x[sin1(x)]2dx\displaystyle \displaystyle{\int x \left[sin^{-1}(x) \right ]^2 dx}

If it is then substitute:

sin-1(x) = Θ → sin(Θ) = x → dx = cos(Θ) dΘ = dx

so your integral becomes:

sin(θ)θ2cos(θ)dθ\displaystyle \displaystyle{\int sin(\theta) * \theta^2 * cos(\theta) d\theta}

Now do integration by parts (twice) and back substitute.
 
Hello, i am struggling with this integration, I know how to do either sin²(x)dx or arcsin(x)dx, but not both at the same time.
Could someone point me in the right direction? I would really appreciate it

regards,
lazarus

As that substitution is not entirely obvious, as an alternative, it is possible to do this integral directly with integration by parts. Let \(\displaystyle \displaystyle \begin{align*} u = \arcsin^2{(x)} \implies \mathrm{d}u = \frac{2\arcsin{(x)}}{\sqrt{1 - x^2}}\,\mathrm{d}x \end{align*}\) and \(\displaystyle \displaystyle \begin{align*} \mathrm{d}v = x\,\mathrm{d}x \implies v = \frac{x^2}{2} \end{align*}\) and the integral becomes

\(\displaystyle \displaystyle \begin{align*} \int{x\arcsin^2{(x)}\,\mathrm{d}x} &= \frac{x^2\arcsin^2{(x)}}{2} - \int{ \frac{2\,x^2\arcsin{(x)}}{\sqrt{1 - x^2}}\,\mathrm{d}x } \end{align*}\)

Now apply integration by parts again with \(\displaystyle \displaystyle \begin{align*} u = \arcsin{(x)} \implies \mathrm{d}u = \frac{1}{\sqrt{1 - x^2}}\,\mathrm{d}x \end{align*}\) and \(\displaystyle \displaystyle \begin{align*} \mathrm{d}v = \frac{2\,x^2}{\sqrt{1 - x^2}}\,\mathrm{d}x \end{align*}\). Finding \(\displaystyle \displaystyle \begin{align*} v \end{align*}\) is tough, but not impossible.

\(\displaystyle \displaystyle \begin{align*} v &= \int{ \frac{2\,x^2}{\sqrt{1 - x^2}}\,\mathrm{d}x } \\ &= - \left( 2\,x\,\sqrt{1 - x^2} - \int{ 2\,\sqrt{1 - x^2}\,\mathrm{d}x } \right) \\ &= -2\,x\,\sqrt{1 - x^2} + 2\int{ \sqrt{1 - x^2}\,\mathrm{d}x } \\ &= -2\,x\,\sqrt{1 - x^2} + 2\int{ \sqrt{1 - \sin^2{(\theta )}}\,\cos{(\theta )} \,\mathrm{d}\theta } \textrm{ after substituting } x = \sin{(\theta)} \implies \mathrm{d}x = \cos{(\theta)}\,\mathrm{d}\theta \\ &= -2\,x\,\sqrt{1 - x^2} + 2\int{ \cos^2{(\theta )} \,\mathrm{d}\theta } \\ &= -2\,x\,\sqrt{1 - x^2} + 2\int{ \frac{1}{2}\,\left[ 1 + \cos{( 2\,\theta ) } \right] \,\mathrm{d}\theta } \\ &= -2\,x\,\sqrt{1 - x^2} + \int{ \left[ 1 + \cos{ \left( 2\,\theta \right) } \right] \,\mathrm{d}\theta } \\ &= -2\,x\,\sqrt{1 - x^2} + \theta +\frac{1}{2}\sin{ \left( 2\,\theta \right) } \\ &= -2\,x\,\sqrt{1 - x^2} + \arcsin{(x)} + \sin{\left( \theta \right) } \cos{ \left( \theta \right) } \\ &= -2\,x\,\sqrt{1 - x^2} + \arcsin{(x)} + \sin{ \left( \theta \right) } \,\sqrt{ 1 - \sin^2{ \left( \theta \right) } } \\ &= -2\,x\,\sqrt{1 - x^2} + \arcsin{(x)} + x\,\sqrt{ 1 - x^2 } \\ &= \arcsin{(x)} - x\,\sqrt{1 - x^2} \end{align*}\)

and thus going back to the original integral

\(\displaystyle \displaystyle \begin{align*} \frac{x^2\arcsin^2{(x)}}{2} - \int{ \frac{2\,x^2\arcsin{(x)}}{\sqrt{1 - x^2}}\,\mathrm{d}x } &= \frac{x^2\arcsin^2{(x)}}{2} - \left\{ \arcsin{(x)}\,\left[ \arcsin{(x)} - x\,\sqrt{1 - x^2} \right] - \int{ \left[ \arcsin{(x)} - x\,\sqrt{1 - x^2} \right]\,\frac{1}{\sqrt{1 - x^2}} \,\mathrm{d}x } \right\} \\ &= \frac{x^2\arcsin^2{(x)}}{2} - \arcsin^2{(x)} + x\,\sqrt{1 - x^2}\arcsin{(x)} + \int{ \left[ \frac{\arcsin{(x)}}{\sqrt{1 - x^2}} - x \right] \,\mathrm{d}x } \\ &= \frac{x^2\arcsin^2{(x)}}{2} - \arcsin^2{(x)} + x\,\sqrt{1 - x^2}\arcsin{(x)} + \frac{\arcsin^2{(x)}}{2} - \frac{x^2}{2} + C \\ &= \frac{x^2\arcsin^2{(x)} - \arcsin^2{(x)} + 2\,x\,\sqrt{1 - x^2}\arcsin{(x)} - x^2}{2} + C \end{align*}\)


But the approach by Subhotosh Khan is much more elegant. Why not try that method and see if you get the same answer (and in fewer steps with fewer difficult integrations)?
 
Wow, thank you for explaining it so thoroughly! I tried integration by parts before I posted, but got stuck in the middle.
I'll practise with the arcsin/arctan variants, and see which method makes more sense to me.
You guys really helped me out!
 
Top