Intergration trouble

Anthonyk2013

Junior Member
Joined
Sep 15, 2013
Messages
132
I have to integrate 3e^1/2x dx

The rule I use is e^ax dx becomes 1/a e^ax +c

so 3*(1/ 1/2)e^ 1/2x dx

6e^1/2x+c

Right or wrong?
 
I have to integrate 3e^1/2x dx
The rule I use is e^ax dx becomes 1/a e^ax +c
so 3*(1/ 1/2)e^ 1/2x dx
6e^1/2x+c

It is hard to read your notation. If this is what you meant then yes:
3ex2dx=6ex2+c\displaystyle \displaystyle\int {3{e^{\frac{x}{2}}}} dx = 6{e^{\frac{x}{2}}} + c
 
I have to integrate 3e^1/2x dx

The rule I use is e^ax dx becomes 1/a e^ax +c

so 3*(1/ 1/2)e^ 1/2x dx

6e^1/2x+c

Right or wrong?

Three possibilities - following hierarchy of mathematical operations.

3e^1/2x = 3e12x\displaystyle \dfrac{3e^1}{2}x

next possibility...

3e^(1/2 x) = 3e12x\displaystyle 3e^{\frac{1}{2}x} .......... this the one solved above. Watch those grouping symbols

next possibility

3e^1/(2x) = 3e12x\displaystyle 3e^{\frac{1}{2x}} ..... This is a horse of a different color - watch those grouping symbols again

Which expression did you want to integrate?
 
3e^1/(2x) = 3e12x\displaystyle 3e^{\frac{1}{2x}} ..... This is a horse of a different color - watch those grouping symbols again

Actually,  \displaystyle \ 3e^1/(2x)  \displaystyle \ =  3e2x\displaystyle \ \dfrac{3e}{2x}


3e^(1/(2x)) =  3e12x\displaystyle \ 3e^{\frac{1}{2x}}
 
Last edited:
Actually,  \displaystyle \ 3e^1/(2x)  \displaystyle \ =  3e2x\displaystyle \ \dfrac{3e}{2x}


3e^(1/(2x)) =  3e12x\displaystyle \ 3e^{\frac{1}{2x}}

You are correct - I missed those two brackets.
 
Top