T TwistedNerve New member Joined Nov 19, 2007 Messages 4 Apr 27, 2008 #1 hey. i need help with the inverse laplace of something. im guessing theres an algebra trick and i just dont see it... 3s/(s^2 -2s + 7)
hey. i need help with the inverse laplace of something. im guessing theres an algebra trick and i just dont see it... 3s/(s^2 -2s + 7)
G galactus Super Moderator Staff member Joined Sep 28, 2005 Messages 7,203 Apr 27, 2008 #2 Re: inverse laplace Inverse laplace of \(\displaystyle \frac{3s}{s^{2}-2s+7}\)? Complete the square in the denominator. \(\displaystyle \frac{3s}{(s-1)^{2}+6}\) \(\displaystyle \frac{b}{(p+a)^{2}+b^{2}}=e^{-at}sin(bt)\) \(\displaystyle \frac{p+a}{(p+a)^{2}+b^{2}}=e^{-at}cos(bt)\) I get \(\displaystyle 3e^{t}cos(\sqrt{6}t)+\frac{\sqrt{6}e^{t}sin(\sqrt{6}t)}{2}=\frac{e^{t}(6cos(\sqrt{6}t)+\sqrt{6}sin(\sqrt{6}t))}{2}\)
Re: inverse laplace Inverse laplace of \(\displaystyle \frac{3s}{s^{2}-2s+7}\)? Complete the square in the denominator. \(\displaystyle \frac{3s}{(s-1)^{2}+6}\) \(\displaystyle \frac{b}{(p+a)^{2}+b^{2}}=e^{-at}sin(bt)\) \(\displaystyle \frac{p+a}{(p+a)^{2}+b^{2}}=e^{-at}cos(bt)\) I get \(\displaystyle 3e^{t}cos(\sqrt{6}t)+\frac{\sqrt{6}e^{t}sin(\sqrt{6}t)}{2}=\frac{e^{t}(6cos(\sqrt{6}t)+\sqrt{6}sin(\sqrt{6}t))}{2}\)