Evaluate the Riemann sum for f(x)=1−21x with six subintervals, taking the sample points to be left endpoints.
f(x)=1−21x on interval [2,14] given [a,b]
i=4∑nΔx[f(a+iΔx−Δx)]
Δx=nb−a
Δx=614−2=2
n=6
i=6∑n(2)[[f(2+(1)(2)−(2))]+[f(2+(2)(2)−(2))]+[f(2+(3)(2)−(2))]+[f(2+(4)(2)−(2))]+[f(2+(5)(2)−(2))]+[f(2+(6)(2)−(2))]
i=6∑n(2)[[f(2+2−(2))]+[f(2+4−(2))]+[f(2+6−(2)])+[f(2+8−(2))]+[f(2+10−(2))]+[f(2+12−(2))]
i=6∑n(2)[[f(2)]+[f(4)]+[f(6)]+[f(8)]+[f(10)]+[f(12)]
i=6∑n(2)[[1−21(2)]+[1−21(4)]+[1−21(6)]+[1−21(8)]+[1−21(10)]+[1−21(12)]
i=6∑n(2)[[1−(1)]+[1−(2)]+[1−(3)]+[1−(4)]+[1−(5)]+[1−(6)]
i=6∑n(2)[[0]+[−1]+[−2]+[−3]+[−4]+[−5]
i=6∑n[0]+[−2]+[−4]+[−6]+[−8]+[−10]
On the right track?
f(x)=1−21x on interval [2,14] given [a,b]
i=4∑nΔx[f(a+iΔx−Δx)]
Δx=nb−a
Δx=614−2=2
n=6
i=6∑n(2)[[f(2+(1)(2)−(2))]+[f(2+(2)(2)−(2))]+[f(2+(3)(2)−(2))]+[f(2+(4)(2)−(2))]+[f(2+(5)(2)−(2))]+[f(2+(6)(2)−(2))]
i=6∑n(2)[[f(2+2−(2))]+[f(2+4−(2))]+[f(2+6−(2)])+[f(2+8−(2))]+[f(2+10−(2))]+[f(2+12−(2))]
i=6∑n(2)[[f(2)]+[f(4)]+[f(6)]+[f(8)]+[f(10)]+[f(12)]
i=6∑n(2)[[1−21(2)]+[1−21(4)]+[1−21(6)]+[1−21(8)]+[1−21(10)]+[1−21(12)]
i=6∑n(2)[[1−(1)]+[1−(2)]+[1−(3)]+[1−(4)]+[1−(5)]+[1−(6)]
i=6∑n(2)[[0]+[−1]+[−2]+[−3]+[−4]+[−5]
i=6∑n[0]+[−2]+[−4]+[−6]+[−8]+[−10]
Last edited: