Hi. Can someone please review this limit problem?
. . . . .\(\displaystyle \displaystyle \lim_{x\, \rightarrow\, -\infty}\, \dfrac{\sqrt{\strut 4x^2\, +\, 3x\, -\, 6\,}\, -\, 2}{1}\)
. . . . .\(\displaystyle \displaystyle =\, \lim_{x\, \rightarrow\, -\infty}\, \dfrac{\sqrt{\strut 4x^2\, +\, 3x\, -\, 6\,}\, -\, 2}{1}\, \times\, \dfrac{\sqrt{\strut 4x^2\, +\, 3x\, -\, 6\,}\, +\, 2}{\sqrt{\strut 4x^2\, +\, 3x\, -\, 6\,}\, +\, 2}\)
. . . . .\(\displaystyle \displaystyle =\, \lim_{x\, \rightarrow\, -\infty}\, \left(\dfrac{4x^2\, +\, 3x\, -\, 6\, -\, 4}{\sqrt{\strut 4x^2\, +\, 3x\, -\, 6\,}\, +\, 2}\right)\,\dfrac{\left(\dfrac{1}{x}\right)}{\left(\dfrac{1}{x}\right)}\, =\,\lim_{x\, \rightarrow\, -\infty}\, \dfrac{4x\, +\, 3\, -\, \dfrac{6}{x}\, -\, \dfrac{4}{x}}{\sqrt{\strut 4\, +\, \dfrac{3}{x}\, -\, \dfrac{6}{x^2}\,}\, +\, \dfrac{2}{x}}\)
. . . . .\(\displaystyle \displaystyle =\, \lim_{x\, \rightarrow\, -\infty}\, \dfrac{4x\, +\, 3\, -\, 0\, -\, 0}{\sqrt{\strut 4\, +\, 0\, -\, 0\,}\, +\, 0}\, =\, =\, \lim_{x\, \rightarrow\, -\infty}\, \dfrac{4x\, +\, 3}{\sqrt{\strut 4\,}}\, =\, -\infty\)
Please point out any mistakes. Thank you.
. . . . .\(\displaystyle \displaystyle \lim_{x\, \rightarrow\, -\infty}\, \dfrac{\sqrt{\strut 4x^2\, +\, 3x\, -\, 6\,}\, -\, 2}{1}\)
. . . . .\(\displaystyle \displaystyle =\, \lim_{x\, \rightarrow\, -\infty}\, \dfrac{\sqrt{\strut 4x^2\, +\, 3x\, -\, 6\,}\, -\, 2}{1}\, \times\, \dfrac{\sqrt{\strut 4x^2\, +\, 3x\, -\, 6\,}\, +\, 2}{\sqrt{\strut 4x^2\, +\, 3x\, -\, 6\,}\, +\, 2}\)
. . . . .\(\displaystyle \displaystyle =\, \lim_{x\, \rightarrow\, -\infty}\, \left(\dfrac{4x^2\, +\, 3x\, -\, 6\, -\, 4}{\sqrt{\strut 4x^2\, +\, 3x\, -\, 6\,}\, +\, 2}\right)\,\dfrac{\left(\dfrac{1}{x}\right)}{\left(\dfrac{1}{x}\right)}\, =\,\lim_{x\, \rightarrow\, -\infty}\, \dfrac{4x\, +\, 3\, -\, \dfrac{6}{x}\, -\, \dfrac{4}{x}}{\sqrt{\strut 4\, +\, \dfrac{3}{x}\, -\, \dfrac{6}{x^2}\,}\, +\, \dfrac{2}{x}}\)
. . . . .\(\displaystyle \displaystyle =\, \lim_{x\, \rightarrow\, -\infty}\, \dfrac{4x\, +\, 3\, -\, 0\, -\, 0}{\sqrt{\strut 4\, +\, 0\, -\, 0\,}\, +\, 0}\, =\, =\, \lim_{x\, \rightarrow\, -\infty}\, \dfrac{4x\, +\, 3}{\sqrt{\strut 4\,}}\, =\, -\infty\)
Please point out any mistakes. Thank you.
Last edited: