I have a problem understanding limits with absolute.
[math]\lim_{x\to 0}\frac{2x - |x|}{|3x| - 2x}[/math]
If I compute the limit
[math]\lim_{x\to 0}\frac{2x - |x|}{|3x| - 2x} = \frac{0}{0}[/math]
This form is applicable for L'hopital rule. The problem I can't use the rule because there are absolute. What happens if I ignore the absolute and calculate the limit normally?
[math]\lim_{x\to 0}\frac{2x - x}{3x - 2x}[/math]
[math]\lim_{x\to 0}\frac{2x - |x|}{|3x| - 2x}[/math]
If I compute the limit
[math]\lim_{x\to 0}\frac{2x - |x|}{|3x| - 2x} = \frac{0}{0}[/math]
This form is applicable for L'hopital rule. The problem I can't use the rule because there are absolute. What happens if I ignore the absolute and calculate the limit normally?
[math]\lim_{x\to 0}\frac{2x - x}{3x - 2x}[/math]