limits

lim x -->0 sin (x^2)/ 3x^2

Make the substitution u=x2\displaystyle u=x^2 and note that x0    u0\displaystyle x\to 0 \iff u\to 0

limx0sin(x2)3x2=13limu0sin(u)u\displaystyle \displaystyle\lim_{x\to 0}\frac{\sin(x^2)}{3x^2} = \frac{1}{3}\lim_{u\to 0}\cdot \frac{\sin(u)}{u}
 
lim x -->0 sin(x^2)/(3x^2) . . . . Make sure you place grouping symbols around this denominator.

Alternative using L'Hopital's Rule:


limx0[cos(x2)](2x)6x =\displaystyle \displaystyle\lim_{x\to 0} \dfrac{[cos(x^2)](2x)}{6x} \ =


limx0cos(x2)3 = ?\displaystyle \displaystyle\lim_{x\to 0} \dfrac{cos(x^2)}{3} \ = \ ?
 
Last edited:
Top