lim x -->0 sin (x^2)/ 3x^2
D daon2 Senior Member Joined Aug 17, 2011 Messages 1,003 Jun 13, 2012 #2 291 said: lim x -->0 sin (x^2)/ 3x^2 Click to expand... Make the substitution u=x2\displaystyle u=x^2u=x2 and note that x→0 ⟺ u→0\displaystyle x\to 0 \iff u\to 0x→0⟺u→0 limx→0sin(x2)3x2=13limu→0⋅sin(u)u\displaystyle \displaystyle\lim_{x\to 0}\frac{\sin(x^2)}{3x^2} = \frac{1}{3}\lim_{u\to 0}\cdot \frac{\sin(u)}{u}x→0lim3x2sin(x2)=31u→0lim⋅usin(u)
291 said: lim x -->0 sin (x^2)/ 3x^2 Click to expand... Make the substitution u=x2\displaystyle u=x^2u=x2 and note that x→0 ⟺ u→0\displaystyle x\to 0 \iff u\to 0x→0⟺u→0 limx→0sin(x2)3x2=13limu→0⋅sin(u)u\displaystyle \displaystyle\lim_{x\to 0}\frac{\sin(x^2)}{3x^2} = \frac{1}{3}\lim_{u\to 0}\cdot \frac{\sin(u)}{u}x→0lim3x2sin(x2)=31u→0lim⋅usin(u)
L lookagain Elite Member Joined Aug 22, 2010 Messages 3,259 Jun 13, 2012 #3 291 said: lim x -->0 sin(x^2)/(3x^2) . . . . Make sure you place grouping symbols around this denominator. Click to expand... Alternative using L'Hopital's Rule: limx→0[cos(x2)](2x)6x =\displaystyle \displaystyle\lim_{x\to 0} \dfrac{[cos(x^2)](2x)}{6x} \ = x→0lim6x[cos(x2)](2x) = limx→0cos(x2)3 = ?\displaystyle \displaystyle\lim_{x\to 0} \dfrac{cos(x^2)}{3} \ = \ ?x→0lim3cos(x2) = ? Last edited: Jun 13, 2012
291 said: lim x -->0 sin(x^2)/(3x^2) . . . . Make sure you place grouping symbols around this denominator. Click to expand... Alternative using L'Hopital's Rule: limx→0[cos(x2)](2x)6x =\displaystyle \displaystyle\lim_{x\to 0} \dfrac{[cos(x^2)](2x)}{6x} \ = x→0lim6x[cos(x2)](2x) = limx→0cos(x2)3 = ?\displaystyle \displaystyle\lim_{x\to 0} \dfrac{cos(x^2)}{3} \ = \ ?x→0lim3cos(x2) = ?
B biffboy New member Joined May 3, 2012 Messages 21 Jun 18, 2012 #4 291 said: lim x -->0 sin (x^2)/ 3x^2 Click to expand... =1/3limx->0 sinx^2/x^2 Hospital rule =1/3(2xcosx^2)/2x=limx->0 1/3(cosx^2)= 1/3
291 said: lim x -->0 sin (x^2)/ 3x^2 Click to expand... =1/3limx->0 sinx^2/x^2 Hospital rule =1/3(2xcosx^2)/2x=limx->0 1/3(cosx^2)= 1/3
L lookagain Elite Member Joined Aug 22, 2010 Messages 3,259 Jun 18, 2012 #5 biffboy said: =1/3limx->0 sinx^2/x^2 Hospital rule =1/3(2xcosx^2)/2x=limx->0 1/3(cosx^2)= 1/3 Click to expand... I already posted this solution using the same method right before yours, biffboy.
biffboy said: =1/3limx->0 sinx^2/x^2 Hospital rule =1/3(2xcosx^2)/2x=limx->0 1/3(cosx^2)= 1/3 Click to expand... I already posted this solution using the same method right before yours, biffboy.