ln and Square Root Diff

Jason76

Senior Member
Joined
Oct 19, 2012
Messages
1,180
f(x)=ln[x+x29]\displaystyle f(x) = \ln[x + \sqrt{x^{2} - 9}]

f(x)=ln[x+(x29)1/2]\displaystyle f(x) = \ln[x + (x^{2} - 9)^{1/2}]

f(x)=ln[1+12(u)1/2(2)]\displaystyle f'(x) = \ln[1 + \dfrac{1}{2} (u)^{-1/2} (2)]

f(x)=ln[1+12(x29)1/2(2)]\displaystyle f'(x) = \ln[1 + \dfrac{1}{2} (x^{2} - 9)^{-1/2} (2)] :confused:
 
Last edited:
f(x)=ln[x+x29]\displaystyle f(x) = \ln[x + \sqrt{x^{2} - 9}]

f(x)=ln[x+(x29)1/2]\displaystyle f(x) = \ln[x + (x^{2} - 9)^{1/2}]

f(x)=ln[1+12(u)1/2(2)]\displaystyle f'(x) = \ln[1 + \dfrac{1}{2} (u)^{-1/2} (2)]

f(x)=ln[1+12(x29)1/2(2)]\displaystyle f'(x) = \ln[1 + \dfrac{1}{2} (x^{2} - 9)^{-1/2} (2)] :confused:

No, it's 1 divided by the quantity you're taking the logarithm of, multiplied by the derivative of that quantity.


d[ln(u)] = duu\displaystyle d[ln(u)] \ = \ \dfrac{du}{u}
 
f(x)=ln[x+x29]\displaystyle f(x) = \ln[x + \sqrt{x^{2} - 9}]

f(x)=ln[x+(x29)1/2]\displaystyle f(x) = \ln[x + (x^{2} - 9)^{1/2}]

f(x)=1u[ddxu]\displaystyle f'(x) = \dfrac{1}{u}[\dfrac{d}{dx} u]

f(x)=1u[1+((v)(ddxv))]\displaystyle f'(x) = \dfrac{1}{u}[1 + ((v)(\dfrac{d}{dx} v))]

f(x)=1u[1+(12(v)1/2(2))]\displaystyle f'(x) = \dfrac{1}{u}[1 + (\dfrac{1}{2}(v)^{-1/2}(2))]

f(x)=1u[1+(12(x29)1/2(2))]\displaystyle f'(x) = \dfrac{1}{u}[1 + (\dfrac{1}{2}(x^{2} - 9)^{-1/2}(2))]

f(x)=1u[1+(x29)1/2]\displaystyle f'(x) = \dfrac{1}{u}[1 + (x^{2} - 9)^{-1/2}]

f(x)=1x+(x29)1/2[1+(x29)1/2]\displaystyle f'(x) = \dfrac{1}{x + (x^{2} - 9)^{1/2}}[1 + (x^{2} - 9)^{-1/2}]
 
Last edited:
Top