Logarithm confused

Loki123

Full Member
Joined
Sep 22, 2021
Messages
790
I don't have the original problem.
The first line is the problem. I don't understand how they got second and third line. How do I get this? IMG_20220308_203751.jpg
 
Terrible notation.

log3{log2(x)9}=2+log3{14logx(4)}=2log3(3)+log3{14logx(4)}.log_3\{log_2(x) - 9\} = 2 + log_3\{1 - 4log_x(4)\} = 2log_3(3) +log_3\{1 - 4log_x(4)\}.
Follow that? Now exponents.

log3{log2(x)9}=2log3(3)+log3{14logx(4)}=log3(32)+log3{1logx(44)}=log3(9)+log3{1logx(28)}.log_3\{log_2(x) - 9\} = 2log_3(3) +log_3\{1 - 4log_x(4)\} =\\ log_3(3^2) + log_3\{1 - log_x(4^4)\} = log_3(9) + log_3\{1 - log_x(2^8)\}.
Now change of base formula

log3{log2(x)9}=log3(9)+log3{1logx(28)}=log3(9)+log3{1log2(28)log2(x)}=log3(9)+log3{18log2(x)}=log3{9(18log2(x))}.log_3\{log_2(x) - 9\} = log_3(9) + log_3\{1 - log_x(2^8)\} =\\ log_3(9) + log_3 \left \{ 1 - \dfrac{log_2(2^8)}{log_2(x)} \right \} = log_3(9) + log_3 \left \{ 1 - \dfrac{8}{log_2(x)} \right \} =\\ log_3 \left \{ 9 * \left ( 1 - \dfrac{8}{log_2(x)} \right ) \right \} .
Now we can drop the logs to the base 3.

log2(x)9=9(18log2(x))=972log2(x).log_2(x) - 9 = 9 * \left (1 - \dfrac{8}{log_2(x)} \right ) = 9 - \dfrac{72}{log_2(x)}.
Now what?
 
Terrible notation.

log3{log2(x)9}=2+log3{14logx(4)}=2log3(3)+log3{14logx(4)}.log_3\{log_2(x) - 9\} = 2 + log_3\{1 - 4log_x(4)\} = 2log_3(3) +log_3\{1 - 4log_x(4)\}.
Follow that? Now exponents.

log3{log2(x)9}=2log3(3)+log3{14logx(4)}=log3(32)+log3{1logx(44)}=log3(9)+log3{1logx(28)}.log_3\{log_2(x) - 9\} = 2log_3(3) +log_3\{1 - 4log_x(4)\} =\\ log_3(3^2) + log_3\{1 - log_x(4^4)\} = log_3(9) + log_3\{1 - log_x(2^8)\}.
Now change of base formula

log3{log2(x)9}=log3(9)+log3{1logx(28)}=log3(9)+log3{1log2(28)log2(x)}=log3(9)+log3{18log2(x)}=log3{9(18log2(x))}.log_3\{log_2(x) - 9\} = log_3(9) + log_3\{1 - log_x(2^8)\} =\\ log_3(9) + log_3 \left \{ 1 - \dfrac{log_2(2^8)}{log_2(x)} \right \} = log_3(9) + log_3 \left \{ 1 - \dfrac{8}{log_2(x)} \right \} =\\ log_3 \left \{ 9 * \left ( 1 - \dfrac{8}{log_2(x)} \right ) \right \} .
Now we can drop the logs to the base 3.

log2(x)9=9(18log2(x))=972log2(x).log_2(x) - 9 = 9 * \left (1 - \dfrac{8}{log_2(x)} \right ) = 9 - \dfrac{72}{log_2(x)}.
Now what?
This:
IMG_20220308_230222.jpg
Thank you for such detailed explanation. It really helped.
 
This:
View attachment 31584
Thank you for such detailed explanation. It really helped.
I am glad the detail helped. Good work on recognizing the quadratic.

But you overlooked something.

log3(log2(26)9)=log3(69) TILT.log_3(log_2(2^6) - 9) = log_3(6 - 9) \text { TILT}.
You need to test your answers against the ORIGINAL equations.
 
@Loki123,
Another way you can see how they got from line 2 to line 3 is:
log3(a)=log3(b)    a=b\log_{3}(a)=\log_{3}(b)\implies a=b
 
Ye
I am glad the detail helped. Good work on recognizing the quadratic.

But you overlooked something.

log3(log2(26)9)=log3(69) TILT.log_3(log_2(2^6) - 9) = log_3(6 - 9) \text { TILT}.
You need to test your answers against the ORIGINAL equations.
Yes I wrote that on the side. The condition is x>2^9 so the only correct answer is x=2^12
 
Here is how I go from line 2 to line 3.
2+log3(14logx4)=log39+log3(14logx4)=log3[9(14logx4)]\displaystyle 2 + \log_3(1-4\log_x4) = \log_39+ \log_3(1-4\log_x4)=\log_3[9(1-4\log_x4)]

Remains to show that 4logx4=8log2x\displaystyle 4\log_x4=\dfrac{8}{\log_2x}
4logx4=4(log24log2x)=4(2log2x)=8log2x\displaystyle 4\log_x4= 4(\dfrac{\log_24}{log_2x}) = 4(\dfrac{2}{log_2x}) = \dfrac{8}{log_2x}

So 2+log3(14logx4)=log39+log3(14logx4)=log3[9(14logx4)]=log3[9(18log2x)]\displaystyle 2 + \log_3(1-4\log_x4) = \log_39+ \log_3(1-4\log_x4)=\log_3[9(1-4\log_x4)] =\log_3[9(1-\dfrac{8}{\log_2x})]
 
Last edited:
Here is how I go from line 2 to line 3.
2+log3(14logx4)=log39+log3(14logx4)=log3[9(14logx4)]\displaystyle 2 + \log_3(1-4\log_x4) = \log_39+ \log_3(1-4\log_x4)=\log_3[9(1-4\log_x4)]

Remains to show that 4logx4=8log2x\displaystyle 4\log_x4=\dfrac{8}{\log_2x}
4logx4=4(log24log2x)=4(2log2x)=8log2x\displaystyle 4\log_x4= 4(\dfrac{\log_24}{log_2x}) = 4(\dfrac{2}{log_2x}) = \dfrac{8}{log_2x}

So 2+log3(14logx4)=log39+log3(14logx4)=log3[9(14logx4)]=log3[9(18log2x)]\displaystyle 2 + \log_3(1-4\log_x4) = \log_39+ \log_3(1-4\log_x4)=\log_3[9(1-4\log_x4)] =\log_3[9(1-\dfrac{8}{\log_2x})]
Dr Subotosh Khan,
Do you have light in the corner? If so, you must extinguish it. You are to sit in a dark corner facing the wall after your last mistake.
Elite Member Steven
 
Dr Subotosh Khan,
Do you have light in the corner? If so, you must extinguish it. You are to sit in a dark corner facing the wall after your last mistake.
Elite Member Steven
No artificial light - it is just my "blinding brilliance".

I don't need no stinking external light from outside ..............
 
Top