Logarithm Problem

mathmad2008

New member
Joined
Apr 14, 2012
Messages
1
Hi guys,

I'm having trouble with this problem:

Code:
3^(x + 4) = 6^(2x - 5)

Here's what I've done so far:

Code:
3^(x + 4) = 6^(2x - 5)
log( 6^(2x - 5) ) / log( 3 ) = x + 4
(2x - 5) * (log( 6 ) / log( 3 )) = x + 4
log( 6 ) / log( 3 ) = (x + 4) / (2x - 5)

Any help would be appreciated!
 
Hi guys,

I'm having trouble with this problem:

Code:
3^(x + 4) = 6^(2x - 5)

Here's what I've done so far:

Code:
3^(x + 4) = 6^(2x - 5)
log( 6^(2x - 5) ) / log( 3 ) = x + 4
(2x - 5) * (log( 6 ) / log( 3 )) = x + 4
log( 6 ) / log( 3 ) = (x + 4) / (2x - 5)

Any help would be appreciated!

You are going in the correct direction.

How much is [log(6)/log(3)] ?

Then continue.....
 
Hello, mathmad2008!

3x+4=62x5\displaystyle 3^{x + 4} \:=\: 6^{2x - 5}

Take logs: .ln(3x+4)=ln(62x5)\displaystyle \ln(3^{x+4}) \:=\:\ln(6^{2x-5})

. . . . . . (x+4)ln3=(2x5)ln6\displaystyle (x+4)\ln3 \:=\: (2x-5)\ln6

. . . . .xln3+4ln3=2xln65ln6\displaystyle x\ln3 + 4\ln3 \:=\:2x\ln6 - 5\ln6

. . . .2xln6xln3=4ln3+5ln6\displaystyle 2x\ln6 - x\ln3 \:=\: 4\ln3 + 5\ln6

i . . .(2ln6ln3)x=4ln3+5ln6\displaystyle (2\ln6 - \ln3)x \:=\:4\ln3 + 5\ln6

. . . . . . . . . . . . . .x=4ln3+5ln62ln6ln3\displaystyle x \:=\:\dfrac{4\ln3 + 5\ln6}{2\ln6 - \ln3}
 
Top