Logarithmic Differentiation:
\(\displaystyle y = x^{e^{x}}\)
\(\displaystyle \ln(y) = \ln(x^{e^{x}})\)
\(\displaystyle \ln(y)= e^{x}\ln x\)
\(\displaystyle \dfrac{1}{y}y' = e^{x} \dfrac{1}{x}\)
\(\displaystyle y' = (y) e^{x} \dfrac{1}{x}\)
\(\displaystyle y' = (x^{e^{x}}) e^{x} \dfrac{1}{x}\)
Right or on the right track?
\(\displaystyle y = x^{e^{x}}\)
\(\displaystyle \ln(y) = \ln(x^{e^{x}})\)
\(\displaystyle \ln(y)= e^{x}\ln x\)
\(\displaystyle \dfrac{1}{y}y' = e^{x} \dfrac{1}{x}\)
\(\displaystyle y' = (y) e^{x} \dfrac{1}{x}\)
\(\displaystyle y' = (x^{e^{x}}) e^{x} \dfrac{1}{x}\)
Last edited by a moderator: