matrix - 3

logistic_guy

Senior Member
Joined
Apr 17, 2024
Messages
1,308
Solve.

X=[6152]X\displaystyle \bold{X}' = \begin{bmatrix}6 & -1 \\5 & 2 \end{bmatrix} \bold{X}
 
Solve.

X=[6152]X\displaystyle \bold{X}' = \begin{bmatrix}6 & -1 \\5 & 2 \end{bmatrix} \bold{X}
Please show us what you have tried and exactly where you are stuck.

Please follow the rules of posting in this forum, as enunciated at:


Please share your work/thoughts about this problem
 
X=[6152]X\displaystyle \bold{X}' = \begin{bmatrix}6 & -1 \\5 & 2 \end{bmatrix} \bold{X}
Finding the eigenvalues is now a piece of cake!

🍰

6λ152λ=(6λ)(2λ)(1)(5)=0\displaystyle \left| \begin{array}{cc}6 - \lambda & -1 \\5 & 2 - \lambda \\\end{array} \right| = (6 - \lambda)(2 - \lambda) - (-1)(5) = 0

This gives:

λ1=4+i\displaystyle \lambda_1 = 4 + i
λ2=4i\displaystyle \lambda_2 = 4 - i

FYI. When one eigenvalue is the conjugate of the other eigenvalue, this can be written as:

λ1=λ2\displaystyle \lambda_1 = \overline{\lambda_2}

Welcome to the world of complex analysis!
😍🥳🤩
 
💙

(2i)k1k2=0\displaystyle (2 - i)k_1 - k_2 = 0
5k1(2+i)k2=0\displaystyle 5k_1 - (2 + i)k_2 = 0

If we choose k1=1\displaystyle k_1 = 1 then k2=2i\displaystyle k_2 = 2 - i.

Then, our first solution is:

X1=[12i]e(4+i)t\displaystyle \bold{X}_1 = \begin{bmatrix}1 \\2 - i \end{bmatrix}e^{(4+i)t}
 
Now we use the second eigenvalue λ2=4i\displaystyle \lambda_2 = 4 - i to get:

(2+i)k1k2=0\displaystyle (2 + i)k_1 - k_2 = 0
5k1(2i)k2=0\displaystyle 5k_1 - (2 - i)k_2 = 0

If we choose k1=1\displaystyle k_1 = 1, then k2=2+i\displaystyle k_2 = 2 + i.

This gives the second solution as:

X2=[12+i]e(4i)t\displaystyle \bold{X}_2 = \begin{bmatrix}1 \\2 + i \end{bmatrix} e^{(4 - i)t}
 
The general solution is:

X=c1X1+c2X2=c1[12i]e(4+i)t+c2[12+i]e(4i)t\displaystyle \bold{X} = c_1\bold{X}_1 + c_2\bold{X}_2 = c_1\begin{bmatrix}1 \\2 - i \end{bmatrix}e^{(4+i)t}+ c_2\begin{bmatrix}1 \\2 + i \end{bmatrix} e^{(4 - i)t}

But this is not the best notation to use. We would love to write the solution in terms of trigonometric functions and without the imaginary i\displaystyle i.

Therefore, we will use the following Theorem (Theorem69)\displaystyle (\textcolor{blue}{\bold{Theorem}} \textcolor{red}{\bold{69}}):

X1=(B1cosβtB2sinβt)eαt\displaystyle \bold{X}_1 = (\bold{B}_1\cos \beta t - \bold{B}_2\sin \beta t)e^{\alpha t}
X2=(B2cosβt+B1sinβt)eαt\displaystyle \bold{X}_2 = (\bold{B}_2\cos \beta t + \bold{B}_1\sin \beta t)e^{\alpha t}

where B1\displaystyle \bold{B}_1 and B2\displaystyle \bold{B}_2 are the real and imaginary parts of K1\displaystyle \bold{K}_1 respectively. And α\displaystyle \alpha and β\displaystyle \beta are the real and imaginary parts of λ1\displaystyle \lambda_1 respectively, where λ1=α+iβ\displaystyle \lambda_1 = \alpha + i\beta is the eigenvalue of K1\displaystyle \bold{K}_1.

Let us write K1\displaystyle \bold{K}_1 again.

K1=[12i]=[12]+i[01]\displaystyle \bold{K}_1 = \begin{bmatrix}1 \\2 - i \end{bmatrix} = \begin{bmatrix}1 \\2 \end{bmatrix} + i\begin{bmatrix}0 \\-1 \end{bmatrix}

Then,

X1=([12]cost[01]sint)e4t\displaystyle \bold{X}_1 = \left(\begin{bmatrix}1 \\2 \end{bmatrix}\cos t - \begin{bmatrix}0 \\-1 \end{bmatrix}\sin t\right)e^{4 t}

X2=([01]cost+[12]sint)e4t\displaystyle \bold{X}_2 = \left(\begin{bmatrix}0 \\-1 \end{bmatrix}\cos t + \begin{bmatrix}1 \\2 \end{bmatrix}\sin t\right)e^{4 t}

And the general solution is:

X=c1([12]cost[01]sint)e4t+c2([01]cost+[12]sint)e4t\displaystyle \bold{X} = c_1\left(\begin{bmatrix}1 \\2 \end{bmatrix}\cos t - \begin{bmatrix}0 \\-1 \end{bmatrix}\sin t\right)e^{4 t} + c_2\left(\begin{bmatrix}0 \\-1 \end{bmatrix}\cos t + \begin{bmatrix}1 \\2 \end{bmatrix}\sin t\right)e^{4 t}

With a little simplification, the general solution becomes:

X=c1[cost2cost+sint]e4t+c2[sint2sintcost]e4t\displaystyle \bold{X} = \textcolor{blue}{c_1\begin{bmatrix}\cos t \\2\cos t + \sin t \end{bmatrix}e^{4 t} + c_2\begin{bmatrix}\sin t \\2\sin t - \cos t \end{bmatrix}e^{4 t}}
 
Last edited:
Top