The general solution is:
X = c 1 X 1 + c 2 X 2 = c 1 [ 1 2 − i ] e ( 4 + i ) t + c 2 [ 1 2 + i ] e ( 4 − i ) t \displaystyle \bold{X} = c_1\bold{X}_1 + c_2\bold{X}_2 = c_1\begin{bmatrix}1 \\2 - i \end{bmatrix}e^{(4+i)t}+ c_2\begin{bmatrix}1 \\2 + i \end{bmatrix} e^{(4 - i)t} X = c 1 X 1 + c 2 X 2 = c 1 [ 1 2 − i ] e ( 4 + i ) t + c 2 [ 1 2 + i ] e ( 4 − i ) t
But this is not the best notation to use. We would love to write the solution in terms of trigonometric functions and without the imaginary
i \displaystyle i i .
Therefore, we will use the following Theorem
( T h e o r e m 69 ) \displaystyle (\textcolor{blue}{\bold{Theorem}} \textcolor{red}{\bold{69}}) ( T h e o r e m 6 9 ) :
X 1 = ( B 1 cos β t − B 2 sin β t ) e α t \displaystyle \bold{X}_1 = (\bold{B}_1\cos \beta t - \bold{B}_2\sin \beta t)e^{\alpha t} X 1 = ( B 1 cos β t − B 2 sin β t ) e α t
X 2 = ( B 2 cos β t + B 1 sin β t ) e α t \displaystyle \bold{X}_2 = (\bold{B}_2\cos \beta t + \bold{B}_1\sin \beta t)e^{\alpha t} X 2 = ( B 2 cos β t + B 1 sin β t ) e α t
where
B 1 \displaystyle \bold{B}_1 B 1 and
B 2 \displaystyle \bold{B}_2 B 2 are the real and imaginary parts of
K 1 \displaystyle \bold{K}_1 K 1 respectively. And
α \displaystyle \alpha α and
β \displaystyle \beta β are the real and imaginary parts of
λ 1 \displaystyle \lambda_1 λ 1 respectively, where
λ 1 = α + i β \displaystyle \lambda_1 = \alpha + i\beta λ 1 = α + i β is the eigenvalue of
K 1 \displaystyle \bold{K}_1 K 1 .
Let us write
K 1 \displaystyle \bold{K}_1 K 1 again.
K 1 = [ 1 2 − i ] = [ 1 2 ] + i [ 0 − 1 ] \displaystyle \bold{K}_1 = \begin{bmatrix}1 \\2 - i \end{bmatrix} = \begin{bmatrix}1 \\2 \end{bmatrix} + i\begin{bmatrix}0 \\-1 \end{bmatrix} K 1 = [ 1 2 − i ] = [ 1 2 ] + i [ 0 − 1 ]
Then,
X 1 = ( [ 1 2 ] cos t − [ 0 − 1 ] sin t ) e 4 t \displaystyle \bold{X}_1 = \left(\begin{bmatrix}1 \\2 \end{bmatrix}\cos t - \begin{bmatrix}0 \\-1 \end{bmatrix}\sin t\right)e^{4 t} X 1 = ( [ 1 2 ] cos t − [ 0 − 1 ] sin t ) e 4 t
X 2 = ( [ 0 − 1 ] cos t + [ 1 2 ] sin t ) e 4 t \displaystyle \bold{X}_2 = \left(\begin{bmatrix}0 \\-1 \end{bmatrix}\cos t + \begin{bmatrix}1 \\2 \end{bmatrix}\sin t\right)e^{4 t} X 2 = ( [ 0 − 1 ] cos t + [ 1 2 ] sin t ) e 4 t
And the general solution is:
X = c 1 ( [ 1 2 ] cos t − [ 0 − 1 ] sin t ) e 4 t + c 2 ( [ 0 − 1 ] cos t + [ 1 2 ] sin t ) e 4 t \displaystyle \bold{X} = c_1\left(\begin{bmatrix}1 \\2 \end{bmatrix}\cos t - \begin{bmatrix}0 \\-1 \end{bmatrix}\sin t\right)e^{4 t} + c_2\left(\begin{bmatrix}0 \\-1 \end{bmatrix}\cos t + \begin{bmatrix}1 \\2 \end{bmatrix}\sin t\right)e^{4 t} X = c 1 ( [ 1 2 ] cos t − [ 0 − 1 ] sin t ) e 4 t + c 2 ( [ 0 − 1 ] cos t + [ 1 2 ] sin t ) e 4 t
With a little simplification, the general solution becomes:
X = c 1 [ cos t 2 cos t + sin t ] e 4 t + c 2 [ sin t 2 sin t − cos t ] e 4 t \displaystyle \bold{X} = \textcolor{blue}{c_1\begin{bmatrix}\cos t \\2\cos t + \sin t \end{bmatrix}e^{4 t} + c_2\begin{bmatrix}\sin t \\2\sin t - \cos t \end{bmatrix}e^{4 t}} X = c 1 [ c o s t 2 c o s t + s i n t ] e 4 t + c 2 [ s i n t 2 s i n t − c o s t ] e 4 t
Last edited: Jul 22, 2025