matrix transformation to generate a sequence.

lljj

New member
Joined
Apr 25, 2024
Messages
1
PROBLEM
A graphic designer, Ben, wants to create an animation in which a sequence of squares is created by composition of successive enlargements and translations. The first four frames of the animation are shown in greater detail in the drawing in the attachment.

The width of each successive square is one half of the adjacent larger square. Let the sequence be Uo,U1,U2,U_o,U_1,U_2,… , and the first square U0U_0 has a width of 4 cm.

(a) Find an expression for the width of UnU_n in centimeters.

Ben decides to generate the squares using the transformation (xnyn)=An(xoyo)+bn\begin{pmatrix} x_n \\ y_n \end{pmatrix}=A_n \begin{pmatrix} x_o \\ y_o \end{pmatrix} + b_n, where AnA_n is a 2x2 matrix that represents an enlargement, bnb_n is a 2x1 column vector that represents a translation, (x0,y0)(x_0,y_0) is a point in U0U_0 and (xn,yn)(x_n,y_n) is its image in UnU_n.

(b) (i) Write down A1A_1.

(ii) Write down AnA_n in terms of n.

(c) (i) By considering the case where (x0,y0)(x_0,y_0) is (0,0), state the coordinates (x1,y1)(x_1,y_1), of its image in U1U_1.

(ii) Hence, find b1b_1.

(ii) Show that bn=(8(12n)8(12n))b_n = \begin{pmatrix} 8(1-2^{-n}) \\ 8(1-2^{-n}) \end{pmatrix}
---------------
ANSWER

I have problem solving question (c) (iii). I tried to use induction to prove the identity, but could not do it. Please help. Thanks.

My answers for the other questions:

(a) This is a GP with first term 4 and common ratio 0.5, so 4(0.5)n4(0.5)^{n}

(b) (i) (0.5000.5)\begin{pmatrix} 0.5 & 0 \\ 0 & 0.5 \end{pmatrix}
(ii) (0.5n000.5n)\begin{pmatrix} 0.5^{n} & 0 \\ 0 & 0.5^{n} \end{pmatrix}
(c) (i) (4,4)

(ii) (44)\begin{pmatrix} 4 \\ 4 \end{pmatrix}
 

Attachments

  • square design.png
    square design.png
    132.1 KB · Views: 1
Note that (xnyn)=A1(xn1yn1)+b1\begin{pmatrix}x_n \\y_n\end{pmatrix} = A_1 \begin{pmatrix}x_{n-1} \\y_{n-1}\end{pmatrix}+b_1Replace all n by n-1 and then substituting into the right hand side gives (xnyn)=A2(xn2yn2)+(A1+I)b1\begin{pmatrix}x_n \\y_n\end{pmatrix} = A_2 \begin{pmatrix}x_{n-2} \\y_{n-2}\end{pmatrix}+(A_1 + I)b_1where II is the identity matrix. Repeat that again until we get (xnyn)=An(x0y0)+(An1+An2++A2+A1+I)b1\begin{pmatrix}x_n \\y_n\end{pmatrix} = A_n \begin{pmatrix}x_{0} \\y_{0}\end{pmatrix}+(A_{n-1}+A_{n-2}+\cdots+A_2+A_1+I)b_1Then bn=(An1+An2++A2+A1+I)b1b_n = (A_{n-1}+A_{n-2}+\cdots+A_2+A_1+I)b_1.

Now, note that (An1+An2++A2+A1+I)(IA1)=IAn(A_{n-1}+A_{n-2}+\cdots+A_2+A_1+I)(I-A_1)=I-A_n(To see why, recall the analogous formula in algebra: (1+x+x2++xn1)(1x)=1xn1 + x + x^2 + \cdots + x^{n-1})(1 - x) = 1-x^n, where xx is a real number and nn is a positive integer.)

Then, An1+An2++A1+I=(IAn)(IA1)1=(12n0012n)(0.5000.5)1=(12n0012n)(2002)=(2(12n)002(12n))A_{n-1}+A_{n-2}+\cdots+A_1+I=(I-A_n)(I-A_1)^{-1} = \begin{pmatrix}1 - 2^{-n}&0\\0&1-2^{-n}\end{pmatrix}\begin{pmatrix}0.5&0\\0&0.5\end{pmatrix}^{-1} = \begin{pmatrix}1 - 2^{-n}&0\\0&1-2^{-n}\end{pmatrix}\begin{pmatrix}2&0\\0&2\end{pmatrix} =\begin{pmatrix}2(1-2^{-n})&0\\0&2(1-2^{-n})\end{pmatrix}
Using this, we have bn=(2(12n)002(12n))(44)=(8(12n)8(12n))b_n = \begin{pmatrix}2(1-2^{-n})&0\\0&2(1-2^{-n})\end{pmatrix}\binom{4}4 = \binom{8(1-2^{-n})}{8(1-2^{-n})}
 
Top