Anthonyk2013
Junior Member
- Joined
- Sep 15, 2013
- Messages
- 132
Q4 here.
4. A lidless box with square ends is to be made from a thin sheet of metal. Determine the least area of the metal for which the volume of the box is 3.5m3.
Wrong answer but I'm not sure where I've gone wrong:
\(\displaystyle \mbox{Volume: }\, V\, =\, 3.5m^3\)
\(\displaystyle \mbox{Volume of box: }\, x^2 y\)
\(\displaystyle \mbox{Area of base: }\, x^2\)
\(\displaystyle \mbox{Area of four sides: }\, 4xy\)
\(\displaystyle \mbox{Material needed: }\, x^2\, +\, 4xy\)
\(\displaystyle x^2 y\, =\, 3.5\)
\(\displaystyle y\, =\, \dfrac{3.5}{x^2}\)
\(\displaystyle 4xy\, =\, 4x\, \cdot\, \dfrac{3.5}{x^2}\, =\, \dfrac{14}{x}\)
\(\displaystyle M\, =\, x^2\, +\, \dfrac{14}{x}\)
\(\displaystyle \dfrac{dM}{dx}\, =\, 2x\, +\, \left(-\dfrac{14}{x^2}\right)\, =\, 2x\, -\, \dfrac{14}{x^2}\)
\(\displaystyle \cdot\, 2x\, -\, \dfrac{14}{x^2}\, =\, 0\)
\(\displaystyle 2x^3\, -\, 14\, =\, 0\)
\(\displaystyle x\, =\, \sqrt[3]{\strut 7\,}\, \approx\, 1.912\)
\(\displaystyle y\, =\, \dfrac{3.5}{x^2}\, \approx\, \dfrac{3.5}{1.912^2}\, \approx\, 0.957\)
\(\displaystyle A\, =\, 4\, (\, 1.912\,)\, (\, 0.957\,)\, =\, 7.31\)
4. A lidless box with square ends is to be made from a thin sheet of metal. Determine the least area of the metal for which the volume of the box is 3.5m3.
Wrong answer but I'm not sure where I've gone wrong:
\(\displaystyle \mbox{Volume: }\, V\, =\, 3.5m^3\)
\(\displaystyle \mbox{Volume of box: }\, x^2 y\)
\(\displaystyle \mbox{Area of base: }\, x^2\)
\(\displaystyle \mbox{Area of four sides: }\, 4xy\)
\(\displaystyle \mbox{Material needed: }\, x^2\, +\, 4xy\)
\(\displaystyle x^2 y\, =\, 3.5\)
\(\displaystyle y\, =\, \dfrac{3.5}{x^2}\)
\(\displaystyle 4xy\, =\, 4x\, \cdot\, \dfrac{3.5}{x^2}\, =\, \dfrac{14}{x}\)
\(\displaystyle M\, =\, x^2\, +\, \dfrac{14}{x}\)
\(\displaystyle \dfrac{dM}{dx}\, =\, 2x\, +\, \left(-\dfrac{14}{x^2}\right)\, =\, 2x\, -\, \dfrac{14}{x^2}\)
\(\displaystyle \cdot\, 2x\, -\, \dfrac{14}{x^2}\, =\, 0\)
\(\displaystyle 2x^3\, -\, 14\, =\, 0\)
\(\displaystyle x\, =\, \sqrt[3]{\strut 7\,}\, \approx\, 1.912\)
\(\displaystyle y\, =\, \dfrac{3.5}{x^2}\, \approx\, \dfrac{3.5}{1.912^2}\, \approx\, 0.957\)
\(\displaystyle A\, =\, 4\, (\, 1.912\,)\, (\, 0.957\,)\, =\, 7.31\)
Last edited by a moderator: