Modular arithmetic (how to solve 15^{323} mod 51 if gcd(15,51)=3?)

canvas

Junior Member
Joined
Jun 2, 2021
Messages
124
15323mod   51how to solve it if  gcd(15,51)=3  ?15^{323}\mod\,51\\\\\text{how to solve it if}\,\,\red{\gcd(15,51)=3}\,\,?
 
15323mod   51how to solve it if  gcd(15,51)=3  ?15^{323}\mod\,51\\\\\text{how to solve it if}\,\,\red{\gcd(15,51)=3}\,\,?
Do you know Euler's totient function, ϕ(n)\phi(n)?

xymod  nxymod  ϕ(n)mod  nx^y \mod n \equiv x^{y \mod \phi(n)} \mod n
 
15323mod   51how to solve it if  gcd(15,51)=3  ?15^{323}\mod\,51\\\\\text{how to solve it if}\,\,\red{\gcd(15,51)=3}\,\,?
Can you show that if abmod  pa\equiv b \mod p then for all natural kk: kakbmod  kpka \equiv kb \mod kp ?
 
Do you know Euler's totient function, ϕ(n)\phi(n)?

xymod  nxymod  ϕ(n)mod  nx^y \mod n \equiv x^{y \mod \phi(n)} \mod n
I was able to solve this using @BigBeachBanana 's method:
1532315323mod  ϕ(51)15323mod  3215366×51+99mod  5115^{323} \equiv 15^{323 \mod \phi(51)} \equiv 15 ^{323 \mod 32} \equiv 15^{3} \equiv 66\times 51 + 9 \equiv 9 \mod 51
Can you show that if abmod  pa\equiv b \mod p then for all natural kk: kakbmod  kpka \equiv kb \mod kp ?
abmod  p    p(ab)a\equiv b \mod p \implies p|(a-b). So, pp divides k(ab)=akbkk(a-b) = ak-bk.
Therefore, akbkmod  kak \equiv bk \mod k

Is it supposed to be mod  k\mod k or mod  kp?\mod kp? Also, I don't see where you're going with this can you expand?

Please note that I'm not the OP. This thread seems abandoned so I just took an interest.
 
Is it supposed to be mod  k\mod kmodk or mod  kp?\mod kp?modkp? Also, I don't see where you're going with this can you expand?
It is supposed to be mod  kp\mod kp.

I was thinking of reducing this problem to mod  17\mod 17:
3322=332099mod  173^{322} = 3^{320} \cdot 9 \equiv 9 \mod 17Since 5175mod  175^{17} \equiv 5 \mod 17:
5323=51719519552mod  175323125mod  1753236mod  175^{323} = 5^{17\cdot 19} \equiv 5^{19} \equiv 5 \cdot 5^2\mod 17 \Rightarrow 5^{323} \equiv 125 \mod 17 \Rightarrow 5^{323} \equiv 6 \mod 173322532396mod  17332253233mod  173^{322}5^{323} \equiv 9\cdot 6 \mod 17 \Rightarrow 3^{322} 5^{323} \equiv 3 \mod 17Multiplying all sides by 3 we get:
15323=33322532333mod  31715^{323} = 3\cdot3^{322}\cdot 5^{323} \equiv 3\cdot3 \mod 3\cdot17I.e., the answer is 9.
 
Top