moment of inertia - 7

logistic_guy

Senior Member
Joined
Apr 17, 2024
Messages
1,616
Find the moment of inertia of a thin uniform rectangular plate of length l\displaystyle l, width w\displaystyle w, and mass M\displaystyle M when the rotation is through its center.
 
Find the moment of inertia of a thin uniform rectangular plate of length l\displaystyle l, width w\displaystyle w, and mass M\displaystyle M when the rotation is through its center.
Please show us what you have tried and exactly where you are stuck.

Please follow the rules of posting in this forum, as enunciated at:

Please share your work/thoughts about this problem
 
💕

Iz=R2 dm=(x2+y2) dm=σl/2l/2w/2w/2(x2+y2) dx dy\displaystyle I_z = \int R^2 \ dm = \int (x^2 + y^2) \ dm = \sigma\int_{-l/2}^{l/2} \int_{-w/2}^{w/2} (x^2 + y^2) \ dx \ dy

Double the integrals and start from zero. A trick that will live with you for a life time!

Iz=4σ0l/20w/2(x2+y2) dx dy=4σ0l/2(x33+xy2)0w/2 dy\displaystyle I_z = 4\sigma\int_{0}^{l/2} \int_{0}^{w/2} (x^2 + y^2) \ dx \ dy = 4\sigma\int_{0}^{l/2} \left(\frac{x^3}{3} + xy^2\right)\bigg|_{0}^{w/2} \ dy

Substitute.

Iz=4σ0l/2(w3(8)3+w2y2) dy=4σ(w3(8)3y+w2y33)0l/2\displaystyle I_z = 4\sigma\int_{0}^{l/2} \left(\frac{w^3}{(8)3} + \frac{w}{2}y^2\right) \ dy = 4\sigma \left(\frac{w^3}{(8)3}y + \frac{w}{2}\frac{y^3}{3}\right)\bigg|_{0}^{l/2}

Substitute.

Iz=4σ(w3(8)3l2+w2l33(8))=4Mlw(w3(8)3l2+w2l33(8))\displaystyle I_z = 4\sigma \left(\frac{w^3}{(8)3}\frac{l}{2} + \frac{w}{2}\frac{l^3}{3(8)}\right) = 4\frac{M}{lw}\left(\frac{w^3}{(8)3}\frac{l}{2} + \frac{w}{2}\frac{l^3}{3(8)}\right)

Simplify.

Iz=4M(w248+l248)=M(w212+l212)=112M(w2+l2)\displaystyle I_z = 4M\left(\frac{w^2}{48} + \frac{l^2}{48}\right) = M\left(\frac{w^2}{12} + \frac{l^2}{12}\right) = \textcolor{blue}{\frac{1}{12}M(w^2 + l^2)}
 
Top