[MOVED] What is the value of P+q ?

nelsonling

New member
Joined
Sep 1, 2007
Messages
8
Hi I need your help to solve this question;
If (1+3+5+.....+p) + (1+3+5+.....+q) = (1+3+5+.....+25), what is the value of P+q ?

:roll:
 
Re: What is the value of P+q ?

Hello, nelsonling!

Edit: a really BAD blunder! . . . [Thanks for the heads-up, Subhotosh!]


If \(\displaystyle \,(1\,+\,3\,+\,5\,+\,\cdots\,+\,p)\:+\:(1\,+\,3\,+\,5\,+\,\cdots\,+\,q) \;= \;(1\,+\,3\,+\,5\,+\,\cdots\,+\,25)\),

what is the value of p+q\displaystyle p\,+\,q ?

It is well-known that the sum of the first n\displaystyle n odd numbers is n2\displaystyle n^2.


1+3+5++p\displaystyle 1\,+\,3\,+\,5\,+\,\cdots\,+\,p\, is the sum of the first p+12\displaystyle \frac{p+1}{2} odd numbers.
. . Hence, its sum is: (p+12)2\displaystyle \,\left(\frac{p+1}{2}\right)^2

1+3+5++q\displaystyle 1\,+\,3\,+\,5\,+\,\cdots\,+\,q\, is the sum of the first q+12\displaystyle \frac{q+1}{2} odd numbers.
. . Hence, its sum is: (q+12)2\displaystyle \,\left(\frac{q+1}{2}\right)^2

1+3+5++25\displaystyle 1\,+\,3\,+\,5\,+\,\cdots\,+\,25\, is the sum of the first 25+12=13\displaystyle \frac{25+1}{2}\,=\,13 odd numbers.
. . Hence, its sum is: 132\displaystyle \,13^2

So we have: (p+12)2+(q+12)2=132\displaystyle \:\left(\frac{p+1}{2}\right)^2\,+\,\left(\frac{q+1}{2}\right)^2\:=\:13^2

We have: the sum of two squares equals a square.
. . This is the Pythagorean relationship!

The only Pythagorean triple is: 52+122=132\displaystyle \:5^2\,+\,12^2\:=\:13^2

So we have: p+12=5        p=9\displaystyle \:\frac{p+1}{2}\:=\:5\;\;\Rightarrow\;\;p \,=\,9
. . . . . .and: q+12=12        q=23\displaystyle \:\frac{q+1}{2}\:=\:12\;\;\Rightarrow\;\;q\,=\,23


Therefore: \(\displaystyle \:p\,+\,q\;=\;9\,+\,23\;=\;32\)

 
Re: What is the value of P+q ?

nelsonling said:
Hi I need your help to solve this question;
If (1+3+5+.....+p) + (1+3+5+.....+q) = (1+3+5+.....+25), what is the value of P+q ?

:roll:

What grade problem are these?
 
Re: What is the value of P+q ?

soroban said:
Hello, nelsonling!

Is there a typo? .I don't get integers answers.


If \(\displaystyle \,(1\,+\,3\,+\,5\,+\,\cdots\,+\,p)\:+\:(1\,+\,3\,+\,5\,+\,\cdots\,+\,q) \;= \;(1\,+\,3\,+\,5\,+\,\cdots\,+\,25)\),

what is the value of p+q\displaystyle p\,+\,q ?

It is well-known that the sum of the first n\displaystyle n odd numbers is n2\displaystyle n^2.


1+3+5++p\displaystyle 1\,+\,3\,+\,5\,+\,\cdots\,+\,p\, is the sum of the first (2p1)\displaystyle (2p-1) odd numbers.
. . Hence, its sum is: (2p1)2\displaystyle \,(2p-1)^2

small typo ...(1+3+5..+p) has (p+1)/2 terms - so the sum (p+1)^2/2

1+3+5++q\displaystyle 1\,+\,3\,+\,5\,+\,\cdots\,+\,q\, is the sum of the first (2q1)\displaystyle (2q-1) odd numbers.
. . Hence, its sum is: (2q1)2\displaystyle \,(2q-1)^2

1+3+5++25\displaystyle 1\,+\,3\,+\,5\,+\,\cdots\,+\,25\, is the sum of the first 13\displaystyle 13 odd numbers.
. . Hence, its sum is: 132\displaystyle \,13^2

So we have: \(\displaystyle \:(2p-1)^2\,+\,(2q-1)^2\:=\:13^2\)

We have: the sum of two squares equals a square.
. . This is the Pythagorean relationship!

The only Pythagorean triple is: 52+122=132\displaystyle \:5^2\,+\,12^2\:=\:13^2

But this makes: 2p1=5        p=3\displaystyle \:2p\,-\,1\:=\:5\;\;\Rightarrow\;\;p \,=\,3
. . . . . . . . and: 2q1=12        q=132  \displaystyle \:2q\,-\,1\:=\:12\;\;\Rightarrow\;\;q\,=\,\frac{13}{2}\; ??

 
p = 9, q = 23 : p + q = 32

p = 2a - 1 and q = 2b - 1 where a^2 + b^2 = 169
 
Re: What is the value of P+q ?

soroban said:
So we have: \(\displaystyle \:(2p-1)^2\,+\,(2q-1)^2\:=\:13^2\)
Methinks that should be [(p+1)/2]^2 + [(q+1)/2)^2 = 13^2
 
Re: What is the value of P+q ?

Denis said:
Methinks that should be [(p+1)/2]^2 + [(q+1)/2)^2 = 13^2

Yep - then follow Soroban's method and you would find integer solution
 
Top