S Seadoo12 New member Joined Sep 29, 2013 Messages 1 Sep 29, 2013 #1 Find h'(t) if h(t)=(7)/t^(1/4)-(6)/t^(2/5) h'(t)= This problem is in my review packet. Any help/assistance would be great. Thanks
Find h'(t) if h(t)=(7)/t^(1/4)-(6)/t^(2/5) h'(t)= This problem is in my review packet. Any help/assistance would be great. Thanks
M mathmari Junior Member Joined Apr 15, 2013 Messages 75 Sep 29, 2013 #2 Seadoo12 said: Find h'(t) if h(t)=(7)/t^(1/4)-(6)/t^(2/5) h'(t)= This problem is in my review packet. Any help/assistance would be great. Thanks Click to expand... \(\displaystyle h(t)=\frac{7}{t^{\frac{1}{4}}}-\frac{6}{t^{\frac{2}{5}}}=7 \cdot t^{-\frac{1}{4}}-6 \cdot t^{-\frac{2}{5}} \) \(\displaystyle h'(t)= 7 \cdot (-\frac{1}{4}) \cdot t^{-\frac{1}{4}-1}-6 \cdot (-\frac{2}{5})\cdot t^{-\frac{2}{5}-1}=-\frac{7}{4} \cdot t^{-\frac{5}{4}}+\frac{12}{5} \cdot t^{-\frac{7}{5}}= -\frac{7}{4} \cdot \frac{1}{t^{\frac{5}{4}}}+\frac{12}{5} \cdot \frac{1}{t^{\frac{7}{5}}}\)
Seadoo12 said: Find h'(t) if h(t)=(7)/t^(1/4)-(6)/t^(2/5) h'(t)= This problem is in my review packet. Any help/assistance would be great. Thanks Click to expand... \(\displaystyle h(t)=\frac{7}{t^{\frac{1}{4}}}-\frac{6}{t^{\frac{2}{5}}}=7 \cdot t^{-\frac{1}{4}}-6 \cdot t^{-\frac{2}{5}} \) \(\displaystyle h'(t)= 7 \cdot (-\frac{1}{4}) \cdot t^{-\frac{1}{4}-1}-6 \cdot (-\frac{2}{5})\cdot t^{-\frac{2}{5}-1}=-\frac{7}{4} \cdot t^{-\frac{5}{4}}+\frac{12}{5} \cdot t^{-\frac{7}{5}}= -\frac{7}{4} \cdot \frac{1}{t^{\frac{5}{4}}}+\frac{12}{5} \cdot \frac{1}{t^{\frac{7}{5}}}\)