Need help on a trig problem

Faith54

New member
Joined
Dec 10, 2005
Messages
5
Now, I understand problems such as sin2theta=1 up until the point where I have to find all the solutions. For example, sin2theta=90, theta=45. I get that. But where do I go from there? If someone could explain in both degrees and radians (not using a calculator) that would be GREATLY appreciated. Thank you.
 
Sin(2theta) = 90 is wrong. 2theta = 90 is possible and theta does = 45 but sin(anything) is between -1 and 1
The 2 is the number of cycles in 360° or 2pi radians.
 
Hello, Faith54!

Now, I understand problems such as: sin(2θ)=1\displaystyle \sin(2\theta)\,=\,1
up until the point where I have to find all the solutions.
For example: 2θ=90o        θ=45o\displaystyle 2\theta\,=\,90^o\;\;\Rightarrow\;\;\theta\,=\,45^o
I get that.. But where do I go from there?
The problem is that inverse trig functions have multiple answers.

For example: if sinθ=12\displaystyle \sin\theta\,=\,\frac{1}{2}, we might conclude: θ=30o\displaystyle \theta\,=\,30^o . . . and stop.

But there many other angles which satisfy the equation:
. . 150o,390o,510o,    \displaystyle 150^o,\,390^o,\,510^o,\,\cdots\;\; and: -210o,\displaystyle 210^o,\,-330o,\displaystyle 330^o,\,-570o,\displaystyle 570^o,\,-690o,\displaystyle 690^o,\,\cdots

So how do we include all of them?

For this example, there are two basic answers:
. . θ=30o\displaystyle \theta\,=\,30^o in quadrant 1, and θ=150o\displaystyle \theta\,=\,150^o in quadrant 2.

All the others are simply:   (the basic angle)±(a multiple of 360o)\displaystyle \;\text{(the basic angle)}\,\pm\,\text{(a multiple of 360}^o)

The solutions can be written:   θ={30o+n360o150o+n360o}\displaystyle \;\theta\:=\:\begin{Bmatrix}30^o\,+\,n\cdot360^o \\ 150^o\,+\,n\cdot360^o\end{Bmatrix}

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Back to your problem:   sin(2θ)=1\displaystyle \;\sin(2\theta)\:=\:1

The basic answer is: 2θ=90o\displaystyle \:2\theta\:=\:90^o

The general answer is: 2θ=90o+n360o  \displaystyle \:2\theta\:=\:90^o\,+\,n\cdot360^o\; for any integer n\displaystyle n.

So we have: \(\displaystyle \;2\theta\;=\;\cdots\,-630^o,\.-270^o,\,90^o,\,450^o, \,810^o,\,\cdots\)

Therefore: \(\displaystyle \;\theta\;=\;\cdots\,-315^o,\,-135^o,\,45^o,\,225^o,
\,810^o,\,\cdots\)


If the problem restricts θ\displaystyle \theta to, say, 0oθ<360o\displaystyle 0^o\,\leq\,\theta\,<\,360^o
. . we just pick the ones in that interval:   θ=45o,225o\displaystyle \;\theta\,=\,45^o,\,225^o
 
Top