Need help please! Convert the sum to product and simplify

greed409

New member
Joined
May 4, 2006
Messages
1
I can simplify these problems for 2 terms but I cant figure out 4 terms for the life of me. Here is the specific question:
Convert the sum to the product and simplify: sin3t + sin5t + sin7t + sin9t
I would be ever so greatful if someone could help me solve this. Thank you so much!
 
Just apply the identity sin(x+y)+sin(xy)=2sin(x)cos(y)\displaystyle sin(x+y)+sin(x-y)=2sin(x)cos(y) repeatedly.
 
Re: Need help please! Convert the sum to product and simplif

Hello, greed409!

Convert the sum to a product and simplify: sin3t+sin5t+sin7t+sin9t\displaystyle \,\sin3t\,+\,\sin5t\,+\, \sin7t\,+\,\sin9t
Use the Sum-to-Product Formulas:

    sinA+sinB  =  2sin(A+B2)cos(AB2)\displaystyle \;\;\sin A\,+\,\sin B\;=\;2\cdot\sin\left(\frac{A+B}{2}\right)\cdot\cos\left(\frac{A-B}{2}\right)

    cosA+cosB  =  2cos(A+B2)cos(AB2)\displaystyle \;\;\cos A\,+\,\cos B\;=\;2\cdot\cos\left(\frac{A+B}{2}\right)\cdot\cos\left(\frac{A-B}{2}\right)


I got: 4sin(6t)cos(2t)cos(t)\displaystyle \,4\cdot\sin(6t)\cdot\cos(2t)\cdot\cos(t)
    \displaystyle \;\;But what do they mean by "and simplify"?
 
Top