Need help setting up for integration: (12sin2t+?56sin4t)^2

MAC-A-TAC

New member
Joined
Jan 9, 2009
Messages
31
Would someone walk me through the process of setting up the following for integration....please. t = time

(12 sin 2t + ?56 sin 4t)[sup:30y78ihl]2[/sup:30y78ihl] NOTE: The only term under the radical is 56. Sorry don't have any math syntax software.

Thank you.
 
Re: Need help setting up for integration

Hello, MAC-A-TAC!

This is not a pleasant problem . . .


Would someone walk me through the process of setting up the following for integration?

. . (12sin2t+56sin4t)2dt\displaystyle \int (12\sin 2t + \sqrt{56}\sin 4t)^2\,dt

\(\displaystyle \text{We have: }\:(12\sin2t + 2\sqrt{14}\sin4t)^2 \;=\;\bigg[2(6\sin2t + \sqrt{14}\sin4t)\bigg]^2 \;=\;4\bigg[6\sin2t + \sqrt{14}\sin4t\bigg]^2\)

. . =  4[36sin2 ⁣2t+1214sin2tsin4t+14sin2 ⁣4t]\displaystyle = \;4\bigg[36\sin^2\!2t + 12\sqrt{14}\sin2t\sin4t + 14\sin^2\!4t\bigg]

. . =  4[36(1cos4t2)+1214sin2t(2sin2tcos2t)+14(1cos4t2)]\displaystyle = \;4\left[36\left(\frac{1-\cos4t}{2}\right) + 12\sqrt{14}\sin2t(2\sin2t\cos2t) + 14\left(\frac{1-\cos4t}{2}\right)\right]

. . =  4[1818cos4t+2414sin2 ⁣2tcos2t+7cos8t]\displaystyle = \;4\bigg[18 - 18\cos4t + 24\sqrt{14}\sin^2\!2t\cos2t + 7 - \cos8t\bigg]

. . =  4[2518cos4t7cos8t+2414sin2 ⁣2tcos2t]\displaystyle =\;4\bigg[25 - 18\cos4t - 7\cos8t + 24\sqrt{14}\sin^2\!2t\cos2t\bigg]


We must integrate: 100 ⁣ ⁣ ⁣dt        72 ⁣ ⁣ ⁣cos4tdt        28 ⁣ ⁣ ⁣cos8tdt    +    9614 ⁣ ⁣ ⁣sin2 ⁣2tcos2tdt\displaystyle \text{We must integrate: }\:100\!\!\int\! dt \;\;-\;\; 72\!\!\int\!\cos4t\,dt \;\;-\;\; 28\!\!\int\!\cos8t\,dt \;\;+\;\; 96\sqrt{14}\!\!\int\!\sin^2\!2t\cos2t\,dt

. . For the last integral, let: u=sin2t\displaystyle \text{For the last integral, let: }\,u \:=\:\sin2t

 
Top