R Rex New member Joined Apr 25, 2012 Messages 2 Apr 25, 2012 #1 can anyone help me to solve this lim X->0 [X^3.cos(3/x)] thanks for any help
tkhunny Moderator Staff member Joined Apr 12, 2005 Messages 11,325 Apr 25, 2012 #2 Have you considered rewriting? \(\displaystyle x^{3}\cdot \cos\left(\frac{3}{x}\right) = \frac{\cos\left(\frac{3}{x}\right)}{\frac{1}{x^{3}}}\) As we approach zero, the denominator is unbounded. What say you of the numerator?
Have you considered rewriting? \(\displaystyle x^{3}\cdot \cos\left(\frac{3}{x}\right) = \frac{\cos\left(\frac{3}{x}\right)}{\frac{1}{x^{3}}}\) As we approach zero, the denominator is unbounded. What say you of the numerator?