Silvanoshei
Junior Member
- Joined
- Feb 18, 2013
- Messages
- 61
Let us dig right in, here's my work with us asking to start with x=0.8:
\(\displaystyle f(x)=x^{2}-sinx\)
\(\displaystyle f'(x)=2x-cosx\)
\(\displaystyle x_{n}-\frac{f(x_{n})}{f'(x_{n})}\)
\(\displaystyle x_{n}-\frac{x^{2}_{n}-sinx_{n}}{2x_{n}-cosx_{n}}\)
\(\displaystyle Start=0.8\)
\(\displaystyle 1st=-.243226\)
\(\displaystyle 2nd=-.200571\)
\(\displaystyle 3rd=-.169361\)
So, plugging 0.8=x... i get -.243226, where my prof got 1=0.885638. What do you guys get with \(\displaystyle 0.8-\frac{(0.8^{2}-sin0.8)}{(2(.08)-cos0.8)}\)?
\(\displaystyle f(x)=x^{2}-sinx\)
\(\displaystyle f'(x)=2x-cosx\)
\(\displaystyle x_{n}-\frac{f(x_{n})}{f'(x_{n})}\)
\(\displaystyle x_{n}-\frac{x^{2}_{n}-sinx_{n}}{2x_{n}-cosx_{n}}\)
\(\displaystyle Start=0.8\)
\(\displaystyle 1st=-.243226\)
\(\displaystyle 2nd=-.200571\)
\(\displaystyle 3rd=-.169361\)
So, plugging 0.8=x... i get -.243226, where my prof got 1=0.885638. What do you guys get with \(\displaystyle 0.8-\frac{(0.8^{2}-sin0.8)}{(2(.08)-cos0.8)}\)?
Last edited: