Find a nonzero 2 x 2 matrix A such that AA has all zero entries
M msjoharia New member Joined Nov 29, 2011 Messages 6 Nov 30, 2011 #1 Find a nonzero 2 x 2 matrix A such that AA has all zero entries
renegade05 Full Member Joined Sep 10, 2010 Messages 260 Nov 30, 2011 #2 What you speak of is called a nilpotent matrix. The matrices have the property : Ak=0\displaystyle A^k = 0Ak=0 where A is a square matrix and k is a positive integer. A matrix is nilpotent if it is a triangular matrix. Meaning all the entries below or above a diagonal of zeros is also zero. So for your problem: \(\displaystyle Let ~A=[0100]A=\left[ {\begin{array}{cc} 0 & 1 \\ 0 & 0 \\\end{array} } \right]A=[0010]\) or \(\displaystyle Let ~A=[0010]A=\left[ {\begin{array}{cc} 0 & 0 \\ 1 & 0 \\\end{array} } \right]A=[0100]\) are two solutions. Obviously the 1 can be any constant you want.
What you speak of is called a nilpotent matrix. The matrices have the property : Ak=0\displaystyle A^k = 0Ak=0 where A is a square matrix and k is a positive integer. A matrix is nilpotent if it is a triangular matrix. Meaning all the entries below or above a diagonal of zeros is also zero. So for your problem: \(\displaystyle Let ~A=[0100]A=\left[ {\begin{array}{cc} 0 & 1 \\ 0 & 0 \\\end{array} } \right]A=[0010]\) or \(\displaystyle Let ~A=[0010]A=\left[ {\begin{array}{cc} 0 & 0 \\ 1 & 0 \\\end{array} } \right]A=[0100]\) are two solutions. Obviously the 1 can be any constant you want.
S soroban Elite Member Joined Jan 28, 2005 Messages 5,586 Dec 1, 2011 #3 Hello, msjoharia! Here are a few more . . . Find a nonzero 2 x 2 matrix A such that AA has all zero entries. Click to expand... \(\displaystyle \text{Let }\,A \:=\:\begin{pmatrix}a^&b\\c&d\end{pmatrix}\;\text{such that }\,A\!\cdot\! A \:=\:0\) We have: (abcd)(abcd) = (0000)\displaystyle \text{We have: }\:\begin{pmatrix}a&b\\c&d\end{pmatrix}\begin{pmatrix}a&b\\c&d\end{pmatrix} \:=\:\begin{pmatrix}0&0\\0&0\end{pmatrix}We have: (acbd)(acbd)=(0000) Hence: {a2+bc = 0[1]ab+bd = 0[2]ac+cd = 0[3]bc+d2 = 0[4]}\displaystyle \text{Hence: }\:\begin{Bmatrix} a^2 + bc \:=\:0 & [1] && ab + bd \:=\: 0 & [2] \\ \\ ac+cd \:=\: 0 & [3] && bc+d^2 \:=\: 0 & [4] \end{Bmatrix}Hence: ⎩⎪⎨⎪⎧a2+bc=0ac+cd=0[1][3]ab+bd=0bc+d2=0[2][4]⎭⎪⎬⎪⎫ From [2]: b(a+d) = 0\displaystyle \text{From [2]: }\:b(a+d) \:=\:0From [2]: b(a+d)=0 From [3]: c(a+d) = 0\displaystyle \text{From [3]: }\:c(a+d) \:=\:0From [3]: c(a+d)=0 If b=0 or c=0, then all the elements are zero.\displaystyle \text{If }b = 0\text{ or }c = 0\text{, then all the elements are zero.}If b=0 or c=0, then all the elements are zero. So we have: a+d = 0⇒d = −a\displaystyle \text{So we have: }\:a+d \:=\:0 \quad\Rightarrow\quad d \:=\:-aSo we have: a+d=0⇒d=−a Then [4] becomes: bc+a2 = 0, identital to [1].\displaystyle \text{Then [4] becomes: }\:bc+a^2 \:=\:0\text{, identital to [1].}Then [4] becomes: bc+a2=0, identital to [1]. . . and we have: bc = −a2\displaystyle \text{and we have: }\:bc \:=\:-a^2and we have: bc=−a2 For simplicity, let b=±a and c=∓a\displaystyle \text{For simplicity, let }b = \pm a\,\text{ and }\,c = \mp aFor simplicity, let b=±a and c=∓a Therefore: A = (a±a∓a−a) = a(1±1∓1−1) for a≠0\displaystyle \text{Therefore: }\:A \;=\;\begin{pmatrix}a & \pm a \\ \mp a & -a \end{pmatrix} \;=\;a\begin{pmatrix}1 & \pm 1 \\ \mp1 & -1 \end{pmatrix}\;\text{ for }a \ne 0Therefore: A=(a∓a±a−a)=a(1∓1±1−1) for a=0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ Of course, there are many other variations. From bc=−a2\displaystyle bc = -a^2bc=−a2, we can have: .{b=±a2c=∓1}\displaystyle \begin{Bmatrix}b &=& \pm a^2 \\ c &=& \mp1\end{Bmatrix}{bc==±a2∓1} . . Then: A = (a±a2∓1−a)\displaystyle \text{Then: }\:A \;=\;\begin{pmatrix}a & \pm a^2 \\ \mp1 & -a \end{pmatrix}Then: A=(a∓1±a2−a) If a is composite: a = p ⋅ q, there are more variations.\displaystyle \text{If }a\text{ is composite: }\,a \,=\,p\!\cdot\!q,\,\text{ there are more variations.}If a is composite: a=p⋅q, there are more variations. . . For example: A = (pq±p2q∓q−pq) = q(p±p2∓1−p)\displaystyle \text{For example: }\:A \;=\;\begin{pmatrix}pq & \pm p^2q \\ \mp q & -pq\end{pmatrix} \;=\;q\begin{pmatrix}p & \pm p^2 \\ \mp1 & -p\end{pmatrix}For example: A=(pq∓q±p2q−pq)=q(p∓1±p2−p)
Hello, msjoharia! Here are a few more . . . Find a nonzero 2 x 2 matrix A such that AA has all zero entries. Click to expand... \(\displaystyle \text{Let }\,A \:=\:\begin{pmatrix}a^&b\\c&d\end{pmatrix}\;\text{such that }\,A\!\cdot\! A \:=\:0\) We have: (abcd)(abcd) = (0000)\displaystyle \text{We have: }\:\begin{pmatrix}a&b\\c&d\end{pmatrix}\begin{pmatrix}a&b\\c&d\end{pmatrix} \:=\:\begin{pmatrix}0&0\\0&0\end{pmatrix}We have: (acbd)(acbd)=(0000) Hence: {a2+bc = 0[1]ab+bd = 0[2]ac+cd = 0[3]bc+d2 = 0[4]}\displaystyle \text{Hence: }\:\begin{Bmatrix} a^2 + bc \:=\:0 & [1] && ab + bd \:=\: 0 & [2] \\ \\ ac+cd \:=\: 0 & [3] && bc+d^2 \:=\: 0 & [4] \end{Bmatrix}Hence: ⎩⎪⎨⎪⎧a2+bc=0ac+cd=0[1][3]ab+bd=0bc+d2=0[2][4]⎭⎪⎬⎪⎫ From [2]: b(a+d) = 0\displaystyle \text{From [2]: }\:b(a+d) \:=\:0From [2]: b(a+d)=0 From [3]: c(a+d) = 0\displaystyle \text{From [3]: }\:c(a+d) \:=\:0From [3]: c(a+d)=0 If b=0 or c=0, then all the elements are zero.\displaystyle \text{If }b = 0\text{ or }c = 0\text{, then all the elements are zero.}If b=0 or c=0, then all the elements are zero. So we have: a+d = 0⇒d = −a\displaystyle \text{So we have: }\:a+d \:=\:0 \quad\Rightarrow\quad d \:=\:-aSo we have: a+d=0⇒d=−a Then [4] becomes: bc+a2 = 0, identital to [1].\displaystyle \text{Then [4] becomes: }\:bc+a^2 \:=\:0\text{, identital to [1].}Then [4] becomes: bc+a2=0, identital to [1]. . . and we have: bc = −a2\displaystyle \text{and we have: }\:bc \:=\:-a^2and we have: bc=−a2 For simplicity, let b=±a and c=∓a\displaystyle \text{For simplicity, let }b = \pm a\,\text{ and }\,c = \mp aFor simplicity, let b=±a and c=∓a Therefore: A = (a±a∓a−a) = a(1±1∓1−1) for a≠0\displaystyle \text{Therefore: }\:A \;=\;\begin{pmatrix}a & \pm a \\ \mp a & -a \end{pmatrix} \;=\;a\begin{pmatrix}1 & \pm 1 \\ \mp1 & -1 \end{pmatrix}\;\text{ for }a \ne 0Therefore: A=(a∓a±a−a)=a(1∓1±1−1) for a=0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ Of course, there are many other variations. From bc=−a2\displaystyle bc = -a^2bc=−a2, we can have: .{b=±a2c=∓1}\displaystyle \begin{Bmatrix}b &=& \pm a^2 \\ c &=& \mp1\end{Bmatrix}{bc==±a2∓1} . . Then: A = (a±a2∓1−a)\displaystyle \text{Then: }\:A \;=\;\begin{pmatrix}a & \pm a^2 \\ \mp1 & -a \end{pmatrix}Then: A=(a∓1±a2−a) If a is composite: a = p ⋅ q, there are more variations.\displaystyle \text{If }a\text{ is composite: }\,a \,=\,p\!\cdot\!q,\,\text{ there are more variations.}If a is composite: a=p⋅q, there are more variations. . . For example: A = (pq±p2q∓q−pq) = q(p±p2∓1−p)\displaystyle \text{For example: }\:A \;=\;\begin{pmatrix}pq & \pm p^2q \\ \mp q & -pq\end{pmatrix} \;=\;q\begin{pmatrix}p & \pm p^2 \\ \mp1 & -p\end{pmatrix}For example: A=(pq∓q±p2q−pq)=q(p∓1±p2−p)
M msjoharia New member Joined Nov 29, 2011 Messages 6 Dec 1, 2011 #4 Would a matrix [ 5 -25 ] [ 5 5] [ 2 -10 ][ 1 1] work? When I mulitplied I got zero as the result Last edited: Dec 1, 2011
S soroban Elite Member Joined Jan 28, 2005 Messages 5,586 Dec 2, 2011 #5 Hello, msjoharia! Would a matrix: [5-2555] [5511] work?\displaystyle \text{Would a matrix: }\,\begin{bmatrix}5&\text{-}25 \\ 5&5\end{bmatrix}\,\begin{bmatrix}5&5\\1&1\end{bmatrix}\:\text{ work?}Would a matrix: [55-255][5151] work? When I multiplied, I got zero as the result.\displaystyle \text{When I multiplied, I got zero as the result.}When I multiplied, I got zero as the result. Click to expand... Yes . . . . . if the question was: "Find two different matrices A\displaystyle AA and B\displaystyle BB whose product is zero." But that wasn't the question, was it?
Hello, msjoharia! Would a matrix: [5-2555] [5511] work?\displaystyle \text{Would a matrix: }\,\begin{bmatrix}5&\text{-}25 \\ 5&5\end{bmatrix}\,\begin{bmatrix}5&5\\1&1\end{bmatrix}\:\text{ work?}Would a matrix: [55-255][5151] work? When I multiplied, I got zero as the result.\displaystyle \text{When I multiplied, I got zero as the result.}When I multiplied, I got zero as the result. Click to expand... Yes . . . . . if the question was: "Find two different matrices A\displaystyle AA and B\displaystyle BB whose product is zero." But that wasn't the question, was it?