logistic_guy Senior Member Joined Apr 17, 2024 Messages 2,213 Aug 11, 2025 #1 Determine the normal stress and shear stress acting on the inclined plane \(\displaystyle AB\). Sketch the result on the sectioned element.
Determine the normal stress and shear stress acting on the inclined plane \(\displaystyle AB\). Sketch the result on the sectioned element.
logistic_guy Senior Member Joined Apr 17, 2024 Messages 2,213 Aug 11, 2025 #2 logistic_guy said: Determine the normal stress Click to expand... \(\displaystyle \textcolor{red}{\bold{normal \ stress}}\) \(\displaystyle \sigma_{x'} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2}\cos2\theta + \tau_{xy}\sin 2\theta\) \(\displaystyle = \frac{500 \times 10^3 + 0}{2} + \frac{500 \times 10^3 - 0}{2}\cos(2 \times 120^{\circ}) + 0 = 125000 \ \text{Pa} = \textcolor{blue}{125 \ \text{kPa}}\)
logistic_guy said: Determine the normal stress Click to expand... \(\displaystyle \textcolor{red}{\bold{normal \ stress}}\) \(\displaystyle \sigma_{x'} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2}\cos2\theta + \tau_{xy}\sin 2\theta\) \(\displaystyle = \frac{500 \times 10^3 + 0}{2} + \frac{500 \times 10^3 - 0}{2}\cos(2 \times 120^{\circ}) + 0 = 125000 \ \text{Pa} = \textcolor{blue}{125 \ \text{kPa}}\)
logistic_guy Senior Member Joined Apr 17, 2024 Messages 2,213 Aug 12, 2025 #3 \(\displaystyle \textcolor{blue}{\bold{shear \ stress}}\) \(\displaystyle \gamma_{x'y'} = -\frac{\epsilon_x - \epsilon_y}{2}\sin 2\theta + \gamma_{xy}\cos 2\theta\) \(\displaystyle = -\frac{500 \times 10^{3} - 0}{2}\sin(2 \times 120^{\circ}) + 0 = 216506 \ \text{Pa} = \textcolor{red}{216.506 \ \text{kPa}}\)
\(\displaystyle \textcolor{blue}{\bold{shear \ stress}}\) \(\displaystyle \gamma_{x'y'} = -\frac{\epsilon_x - \epsilon_y}{2}\sin 2\theta + \gamma_{xy}\cos 2\theta\) \(\displaystyle = -\frac{500 \times 10^{3} - 0}{2}\sin(2 \times 120^{\circ}) + 0 = 216506 \ \text{Pa} = \textcolor{red}{216.506 \ \text{kPa}}\)