Number Theory 11/29

Steven G

Elite Member
Joined
Dec 30, 2014
Messages
14,591
Show that if p and q are distinct primes, then p^(q-1) + q^(p-1) = 1 (mod pq)
 
Fermat's little theorem says that
pq11mod  (q)p^{q-1} \equiv 1 \mod(q)
so using that as a starting point,
pq1=k.q+1p^{q-1}=k.q + 1 for some k,
pq=k.p.q+pp^{q}=k.p.q + p
pqpmod  (pq).p^{q} \equiv p \mod(pq).
Similarly for q, and adding
pq+qp(p+q)mod  (pq)      p^{q}+q^{p} \equiv (p+q) \mod(pq) \;\; \; (1).
Now consider
(pq1+qp1)(p+q)=pq+qp+q.pq1+p.qp1(pq+qp)mod  (pq)(p+q)mod  (pq)(p^{q-1}+q^{p-1})(p +q)=p^{q}+q^{p}+q.p^{q-1}+p.q^{p-1} \\ \equiv (p^{q}+q^{p})\mod(pq) \equiv (p+q) \mod(pq)
using (1).
So,
(pq1+qp1)(p+q)(p+q)0mod  (pq),(p^{q-1}+ q^{p-1})(p+q)-(p+q) \equiv 0 \mod(pq),
(p+q)(pq1+qp11)0mod  (pq).(p+q)(p^{q-1}+q^{p-1}-1) \equiv 0 \mod(pq).
Since p+q will not be divisible by pq, it follows that the other factor will be, meaning that
pq1+qp11=k.p.q,p^{q-1} + q^{p-1} - 1 = k.p.q, for some k,
pq1+qp11mod  (pq).p^{q-1}+q^{p-1} \equiv 1 \mod(pq).
 
Since p+q will not be divisible by pq, it follows that the other factor will be, meaning that
Could not resist nitpicking : you need a stronger statement here, i.e. p+qp+q and pqpq are mutually prime.
 
Top