andoverhockey
New member
- Joined
- Oct 8, 2014
- Messages
- 5
Find the total mass of the triangular region shown below. All lengths are in centimeters, and the density of the region is [FONT=MathJax_Math-italic]δ[FONT=MathJax_Main]([/FONT][FONT=MathJax_Math-italic]x[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]1[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Math-italic]x[/FONT][/FONT]grams/cm[FONT=MathJax_Main]2[/FONT].

[FONT=Helvetica Neue, Helvetica, Arial, sans-serif]I know:[/FONT]
[FONT=Helvetica Neue, Helvetica, Arial, sans-serif]Mass = density x area[/FONT]
[FONT=Helvetica Neue, Helvetica, Arial, sans-serif]I know my teacher said to take two separate integrals like:[/FONT]
[FONT=Helvetica Neue, Helvetica, Arial, sans-serif]1)[/FONT]
[FONT=Helvetica Neue, Helvetica, Arial, sans-serif]a = -1[/FONT]
[FONT=Helvetica Neue, Helvetica, Arial, sans-serif]b = 0
[/FONT]the integral from -1 to 0 of (1+x)... then what do I do with the area?
[FONT=Helvetica Neue, Helvetica, Arial, sans-serif]2)[/FONT]
[FONT=Helvetica Neue, Helvetica, Arial, sans-serif]a = 0[/FONT]
[FONT=Helvetica Neue, Helvetica, Arial, sans-serif]b = 1
[/FONT]the integrand from 0 to 1 of (1+x)...
I bet I am over thinking thinking this.

[FONT=Helvetica Neue, Helvetica, Arial, sans-serif]I know:[/FONT]
[FONT=Helvetica Neue, Helvetica, Arial, sans-serif]Mass = density x area[/FONT]
[FONT=Helvetica Neue, Helvetica, Arial, sans-serif]I know my teacher said to take two separate integrals like:[/FONT]
[FONT=Helvetica Neue, Helvetica, Arial, sans-serif]1)[/FONT]
[FONT=Helvetica Neue, Helvetica, Arial, sans-serif]a = -1[/FONT]
[FONT=Helvetica Neue, Helvetica, Arial, sans-serif]b = 0
[/FONT]the integral from -1 to 0 of (1+x)... then what do I do with the area?
[FONT=Helvetica Neue, Helvetica, Arial, sans-serif]2)[/FONT]
[FONT=Helvetica Neue, Helvetica, Arial, sans-serif]a = 0[/FONT]
[FONT=Helvetica Neue, Helvetica, Arial, sans-serif]b = 1
[/FONT]the integrand from 0 to 1 of (1+x)...
I bet I am over thinking thinking this.