Partial differentials of 2 variables problem

7777ft

New member
Joined
May 31, 2019
Messages
13
Problem:
Verify that the sum of three quantities [MATH]x, y, z[/MATH], whose product is a constant [MATH]k[/MATH], is maximum when these three quantities are equal.

My answer [MATH]x=y=z=\sqrt[3]{k}[/MATH] is a minimum according to the second derivative test, and the problem requires a maximum. Are my initial equations incorrect? Are there other critical points?

[MATH]f(x,y,z)=x+y+z[/MATH]
The condition
[MATH]xyz=k \Longrightarrow z=\frac{k}{xy}[/MATH][MATH]f\left(x,y,\frac{k}{xy}\right)=x+y+\frac{k}{xy}=\frac{k + x^2 y + x y^2}{xy}[/MATH]
Partial Derivatives
[MATH]f_{x}=1 - \frac{k}{x^2 y}[/MATH][MATH]f_{xx}=\frac{2 k}{x^3 y}[/MATH][MATH]f_{xy}=\frac{k}{x^2 y^2}[/MATH][MATH]f_{y}=1-\frac{k}{x y^2}[/MATH][MATH]f_{yy}=\frac{2 k}{x y^3}[/MATH]
Set [MATH]f_x=0=1 - \frac{k}{x^2 y}[/MATH]Set [MATH]f_y=0=1 - \frac{k}{x y^2}[/MATH]System of equations resolves to critical point [MATH](x,y)=(\sqrt[3]{k},\sqrt[3]{k})[/MATH] where [MATH]k\neq 0[/MATH][MATH]z=\frac{k}{\sqrt[3]{k}\cdot\sqrt[3]{k}}=\sqrt[3]{k}[/MATH]
Evaluate second order derivatives with critical point
[MATH]f_{xx}(\sqrt[3]{k}, \sqrt[3]{k})=\frac{2}{\sqrt[3]{k}}[/MATH][MATH]f_{yy}(\sqrt[3]{k}, \sqrt[3]{k})=\frac{2}{\sqrt[3]{k}}[/MATH][MATH]f_{xy}(\sqrt[3]{k}, \sqrt[3]{k})=\frac{1}{\sqrt[3]{k}}[/MATH]
Second derivative test
[MATH]D(\sqrt[3]{k},\sqrt[3]{k})=\frac{2}{\sqrt[3]{k}}\cdot\frac{2}{\sqrt[3]{k}}-\left(\frac{1}{\sqrt[3]{k}}\right)^2=\frac{3}{k^{2/3}}[/MATH]........ edited

[MATH][D(\sqrt[3]{k},\sqrt[3]{k}) > 0] \land [f_{xx}(\sqrt[3]{k}, \sqrt[3]{k}) > 0] \therefore[/MATH] critical point is minimum.
 
Last edited by a moderator:
Problem:
Verify that the sum of three quantities [MATH]x, y, z[/MATH], whose product is a constant [MATH]k[/MATH], is maximum when these three quantities are equal.

My answer [MATH]x=y=z=\sqrt[3]{k}[/MATH] is a minimum according to the second derivative test, and the problem requires a maximum. Are my initial equations incorrect? Are there other critical points?

[MATH]f(x,y,z)=x+y+z[/MATH]
The condition
[MATH]xyz=k \Longrightarrow z=\frac{k}{xy}[/MATH][MATH]f\left(x,y,\frac{k}{xy}\right)=x+y+\frac{k}{xy}=\frac{k + x^2 y + x y^2}{xy}[/MATH]
Partial Derivatives
[MATH]f_{x}=1 - \frac{k}{x^2 y}[/MATH][MATH]f_{xx}=\frac{2 k}{x^3 y}[/MATH][MATH]f_{xy}=\frac{k}{x^2 y^2}[/MATH][MATH]f_{y}=1-\frac{k}{x y^2}[/MATH][MATH]f_{yy}=\frac{2 k}{x y^3}[/MATH]
Set [MATH]f_x=0=1 - \frac{k}{x^2 y}[/MATH]Set [MATH]f_y=0=1 - \frac{k}{x y^2}[/MATH]System of equations resolves to critical point [MATH](x,y)=(\sqrt[3]{k},\sqrt[3]{k})[/MATH] where [MATH]k\neq 0[/MATH][MATH]z=\frac{k}{\sqrt[3]{k}\cdot\sqrt[3]{k}}=\sqrt[3]{k}[/MATH]
Evaluate second order derivatives with critical point
[MATH]f_{xx}(\sqrt[3]{k}, \sqrt[3]{k})=\frac{2}{\sqrt[3]{k}}[/MATH][MATH]f_{yy}(\sqrt[3]{k}, \sqrt[3]{k})=\frac{2}{\sqrt[3]{k}}[/MATH][MATH]f_{xy}(\sqrt[3]{k}, \sqrt[3]{k})=\frac{1}{\sqrt[3]{k}}[/MATH]
Second derivative test
[MATH]D(\sqrt[3]{k},\sqrt[3]{k})=\frac{2}{\sqrt[3]{k}}\cdot\frac{2}{\sqrt[3]{k}}-\left(\frac{1}{\sqrt[3]{k}}\right)^2=\frac{2}{k^{2/3}}[/MATH]
[MATH][D(\sqrt[3]{k},\sqrt[3]{k}) > 0] \land [f_{xx}(\sqrt[3]{k}, \sqrt[3]{k}) > 0] \therefore[/MATH] critical point is minimum.
As far as I can see excellent work (I did not review it with 'pencil & paper'). It is all correct - except (I think) there is an inconsequential arithmetic mistake in the second line from the bottom.

I did a quick 'spreadsheet' analysis with k = 27000, and x < 55 and y < 55 and it shows indeed x=y=z (=30 in my example) is a minimum.

Great work and presentation.....
 
It would appear that the problem statement is incorrect.

For comparison, consider the case of two variables x and y. Their product is constant along a rectangular hyperbola xy=k, and clearly their sum is a minimum, not a maximum, when they are equal (the vertex of the hyperbola). For example, if xy=1, then when x=y=1, the sum is 1+1=2; when x=2 and y=1/2, the sum is x+y = 2 1/2, which is greater.

The same is true of your problem, as SK has demonstrated, and as you can show by similar examples. Your conclusion is correct.
 
there is an inconsequential arithmetic mistake in the second line from the bottom.

You're right. I can't find a button to correct my post. At any rate the second line from the bottom of post #1 should be
[MATH]D(\sqrt[3]{k},\sqrt[3]{k})=\frac{2}{\sqrt[3]{k}}\cdot\frac{2}{\sqrt[3]{k}}-\left(\frac{1}{\sqrt[3]{k}}\right)^2=\frac{3}{k^{2/3}}[/MATH]
I can't seem to change the title either; something along the lines of "Maximize the sum of 3 equal values" would've been more descriptive.
 
Top