Perimeter of the triangle

123

New member
Joined
Nov 6, 2010
Messages
46
Lengths of the triangle sides agree to 7 : 8 : 9, while its area is equal to 5405\displaystyle 540\sqrt{5}cm2\displaystyle cm^2.

Calculate the perimeter of the triangle.

maybe i could write that sides of triangle is 7x, 8x, 9x.
then I have Perimeter=24x
... or maybe i wrong

any solutions
 
Hello, 123!

Your game plan is excellent . . . Keep going!


Lengths of the triangle sides agree to 7 : 8 : 9, while its area is equal to 5405\displaystyle 540\sqrt{5}cm2\displaystyle cm^2.

Calculate the perimeter of the triangle.

Someone will suggest Heron's Formula . . . I prefer Trigonometry.


Code:
            *
           *   *
          *       *  8x
      7x *          *
        *             *
       * @              *
      *   *   *   *   *   *
                9x

Law of Cosines: cosθ=(7x)2+(9x)2(8x)22(7x)(9x)=66x2126x2  =  1121\displaystyle \text{Law of Cosines: }\:\cos\theta \:=\:\frac{(7x)^2 + (9x)^2 - (8x)^2}{2(7x)(9x)} \:=\:\frac{66x^2}{126x^2} \;=\;\frac{11}{21}

. . sinθ  =  1cos2 ⁣θ  =  1(1121)2  =  320441  =  8521\displaystyle \sin\theta \;=\;\sqrt{1-\cos^2\!\theta} \;=\;\sqrt{1-\left(\tfrac{11}{21}\right)^2} \;=\;\sqrt{\tfrac{320}{441}} \;=\;\tfrac{8\sqrt{5}}{21}


Formula:   A  =  12absinC\displaystyle \text{Formula: }\;A \;=\;\tfrac{1}{2}ab\sin C

. . The area of a triangle is equal to one-half the product of two sides times the sine of the included angle.\displaystyle \text{The area of a triangle is equal to one-half the product of two sides times the sine of the included angle.}


Hence, we have:   12(7x)(9x)(8521)  =  5405125x2=5405x2=45x=35\displaystyle \text{Hence, we have: }\;\tfrac{1}{2}(7x)(9x)\left(\tfrac{8\sqrt{5}}{21}\right) \;=\;540\sqrt{5} \quad\Rightarrow\quad 12\sqrt{5}\,x^2 \:=\:540\sqrt{5} \quad\Rightarrow\quad x^2 \:=\:45 \quad\Rightarrow\quad x \:=\:3\sqrt{5}

\(\displaystyle \text{Therefore: \:perimeter}\;=\;24x \;=\;24(3\sqrt{5}) \;=\;72\sqrt{5}\text{ cm.}\)

 
now i know how to solve this kind of problem.. thanks for telling solution step by step..
 
123 said:
Lengths of the triangle sides agree to 7 : 8 : 9, while its area is equal to 5405\displaystyle 540\sqrt{5}cm2\displaystyle cm^2.

Calculate the perimeter of the triangle.

maybe i could write that sides of triangle is 7x, 8x, 9x.
then I have Perimeter=24x
... or maybe i wrong

any solutions

Since Heron's formula was mentioned:

\(\displaystyle Area \ of \ a \ triangle \ = \ \sqrt{s*(s-a)*(s-b)*(s-c)\)

where a, b & c are the sides of the triangle and:

s=a+b+c2\displaystyle s = \frac{a+b+c}{2}

then

s = 12x

and

[5405]2 = 12x5x4x3x\displaystyle \left [540\sqrt{5}\right ]^2 \ = \ 12*x * 5*x * 4*x * 3*x

540*540*5 = 720 * x[sup:2jiw9fd7]4[/sup:2jiw9fd7]

x[sup:2jiw9fd7]4[/sup:2jiw9fd7] = 3 * 135 * 5 = 3[sup:2jiw9fd7]4[/sup:2jiw9fd7] * 5[sup:2jiw9fd7]2[/sup:2jiw9fd7]

x = 3 * ?5

Perimeter = 24 * x = 72*?5 cm
 
Top