Please check my solution for this Fourier transform.

YehiaMedhat

Junior Member
Joined
Oct 9, 2022
Messages
74
F{e4t28t}\mathcal{F}\{ e^{-4t^2 -8t} \}et2=21+ω2e^{-t^2} = \frac{2}{1+\omega^2} and e4t28t=e4(t2+2t+1)e4=e4e4(t+1)2e^{-4t^2 -8t} = e^{-4(t^2+2t+1)} e^4 = e^4 e^{-4(t+1)^2}
 Applying the time shift property: e4π eiωeω24\therefore\ \text{Applying the time shift property: } e^4\sqrt{\pi}\ e^{i\omega} e^{\frac{\omega^2}{4}}
 Applying the scaling property: F{e4e(2(t+1))2}=e4π2 eiω2e(ω2)24\therefore\ \text{Applying the scaling property: }\mathcal{F}\{ e^4 e^{-(2(t+1))^2} \} = \frac{e^4\sqrt{\pi}}{2}\ e^{i\frac{\omega}{2}} e^{\frac{(\frac{\omega}{2})^2}{4}}
Final answer:
e4π2 eiω2eω216\frac{e^4\sqrt{\pi}}{2}\ e^{i\frac{\omega}{2}} e^{\frac{\omega^2}{16}}
Is it right or not, because the solution in the sheets provided by my TA doesn't apply the scaling property to the eiωe^{i\omega}, so, the final answer in the sheet is: e4π2 eiωeω216\frac{e^4\sqrt{\pi}}{2}\ e^{i\omega} e^{\frac{\omega^2}{16}}
 
I assume that you missed the factor 2 2 in the exponent of the shift formula.
 
F{e4t28t}\mathcal{F}\{ e^{-4t^2 -8t} \}et2=21+ω2e^{-t^2} = \frac{2}{1+\omega^2} and e4t28t=e4(t2+2t+1)e4=e4e4(t+1)2e^{-4t^2 -8t} = e^{-4(t^2+2t+1)} e^4 = e^4 e^{-4(t+1)^2}
 Applying the time shift property: e4π eiωeω24\therefore\ \text{Applying the time shift property: } e^4\sqrt{\pi}\ e^{i\omega} e^{\frac{\omega^2}{4}}
 Applying the scaling property: F{e4e(2(t+1))2}=e4π2 eiω2e(ω2)24\therefore\ \text{Applying the scaling property: }\mathcal{F}\{ e^4 e^{-(2(t+1))^2} \} = \frac{e^4\sqrt{\pi}}{2}\ e^{i\frac{\omega}{2}} e^{\frac{(\frac{\omega}{2})^2}{4}}
Final answer:
e4π2 eiω2eω216\frac{e^4\sqrt{\pi}}{2}\ e^{i\frac{\omega}{2}} e^{\frac{\omega^2}{16}}
Is it right or not, because the solution in the sheets provided by my TA doesn't apply the scaling property to the eiωe^{i\omega}, so, the final answer in the sheet is: e4π2 eiωeω216\frac{e^4\sqrt{\pi}}{2}\ e^{i\omega} e^{\frac{\omega^2}{16}}
Original function:
g(t)=e4t28t=e4e4(t+1)2g(t) = e^{-4t^2 - 8t} = e^{4}e^{-4(t + 1)^2}

Let f(t)=et2f(t) = e^{-t^2}

Shifting
F{e4e(t+1)2}=e4πeiωF(ω)\mathcal{F}\{e^{4}e^{-(t + 1)^2}\} =e^{4}\sqrt{\pi} e^{-i\omega} F(\omega), where F(ω)=eω24F(\omega) = e^{-\frac{\omega^2}{4}}

The scaling property, you only apply it to the transformed function F(ω)F(\omega).

Scaling
F{e4e(2[t+1])2}=πe4eiωF(ω2)2=π2e4eiωeω216\mathcal{F}\{e^{4}e^{-(2[t + 1])^2}\} = \sqrt{\pi}e^{4} e^{-i\omega} \frac{F(\frac{\omega}{2})}{|2|} = \frac{\sqrt{\pi}}{2}e^{4} e^{-i\omega} e^{-\frac{\omega^2}{16}}
 
Last edited:
Original function:
g(t)=e4t28t=e4e4(t+1)2g(t) = e^{-4t^2 - 8t} = e^{4}e^{-4(t + 1)^2}

Let f(t)=et2f(t) = e^{-t^2}

Shifting
F{e4e(t+1)2}=e4πeiωF(ω)\mathcal{F}\{e^{4}e^{-(t + 1)^2}\} =e^{4}\sqrt{\pi} e^{-i\omega} F(\omega), where F(ω)=eω24F(\omega) = e^{-\frac{\omega^2}{4}}

The scaling property, you only apply it to the transformed function F(ω)F(\omega).

Scaling
F{e4e(2[t+1])2}=πe4eiωF(ω2)2=π2e4eiωeω216\mathcal{F}\{e^{4}e^{-(2[t + 1])^2}\} = \sqrt{\pi}e^{4} e^{-i\omega} \frac{F(\frac{\omega}{2})}{|2|} = \frac{\sqrt{\pi}}{2}e^{4} e^{-i\omega} e^{-\frac{\omega^2}{16}}
Yes exactly this point why the e that was the reason of shifting wasn't affected by scaling??
 
Yes exactly this point why the e that was the reason of shifting wasn't affected by scaling??
eiω\displaystyle e^{-i\omega} is not affected because:

the Time Scaling Property says

F{f(ct)}=1cF(ωc)\displaystyle \mathcal{F}\{f(ct)\} = \frac{1}{|c|}F\left(\frac{\omega}{c}\right)

It did not say

F{f(ct)}=eiωc1cF(ωc)\displaystyle \mathcal{F}\{f(ct)\} = e^{-\frac{i\omega}{c}}\frac{1}{|c|}F\left(\frac{\omega}{c}\right)

To understand the Time Scaling Property of Fourier Transform, you will have to use the definition.

Let f(t)=et2\displaystyle f(t) = e^{-t^2}

We know that F{f(t)}=F(ω)=πeω24\displaystyle \mathcal{F}\{f(t)\} = F(\omega) = \sqrt{\pi}e^{-\frac{\omega^2}{4}}

Now let us scale it by c\displaystyle c and use the definition.

F{f(ct)}=f(ct)eiωt dt=e(ct)2eiωt dt\displaystyle \mathcal{F}\{f(ct)\} = \int_{-\infty}^{\infty} f(ct)e^{i\omega t} \ dt = \int_{-\infty}^{\infty}e^{-(ct)^2}e^{i\omega t} \ dt


=e(ctiω2c)2ω24c2 dt=eω24c2e(ctiω2c)2 dt\displaystyle = \int_{-\infty}^{\infty}e^{-(ct - \frac{i\omega}{2c})^2 - \frac{\omega^2}{4c^2}} \ dt = e^{-\frac{\omega^2}{4c^2}}\int_{-\infty}^{\infty}e^{-(ct - \frac{i\omega}{2c})^2} \ dt


=eω24c2ceu2 du=πeω24c2ceu2π du\displaystyle = \frac{e^{-\frac{\omega^2}{4c^2}}}{c}\int_{-\infty}^{\infty}e^{-u^2} \ du = \frac{\sqrt{\pi}e^{-\frac{\omega^2}{4c^2}}}{c}\int_{-\infty}^{\infty}\frac{e^{-u^2}}{\sqrt{\pi}} \ du


=πeω24c2c(1)=πeω24c2c\displaystyle = \frac{\sqrt{\pi}e^{-\frac{\omega^2}{4c^2}}}{c}(1) = \frac{\sqrt{\pi}e^{-\frac{\omega^2}{4c^2}}}{c}


which is just 1cF(ωc)\displaystyle \frac{1}{|c|}F\left(\frac{\omega}{c}\right)
 
eiω\displaystyle e^{-i\omega} is not affected because:

the Time Scaling Property says

F{f(ct)}=1cF(ωc)\displaystyle \mathcal{F}\{f(ct)\} = \frac{1}{|c|}F\left(\frac{\omega}{c}\right)

It did not say

F{f(ct)}=eiωc1cF(ωc)\displaystyle \mathcal{F}\{f(ct)\} = e^{-\frac{i\omega}{c}}\frac{1}{|c|}F\left(\frac{\omega}{c}\right)

To understand the Time Scaling Property of Fourier Transform, you will have to use the definition.

Let f(t)=et2\displaystyle f(t) = e^{-t^2}

We know that F{f(t)}=F(ω)=πeω24\displaystyle \mathcal{F}\{f(t)\} = F(\omega) = \sqrt{\pi}e^{-\frac{\omega^2}{4}}

Now let us scale it by c\displaystyle c and use the definition.

F{f(ct)}=f(ct)eiωt dt=e(ct)2eiωt dt\displaystyle \mathcal{F}\{f(ct)\} = \int_{-\infty}^{\infty} f(ct)e^{i\omega t} \ dt = \int_{-\infty}^{\infty}e^{-(ct)^2}e^{i\omega t} \ dt


=e(ctiω2c)2ω24c2 dt=eω24c2e(ctiω2c)2 dt\displaystyle = \int_{-\infty}^{\infty}e^{-(ct - \frac{i\omega}{2c})^2 - \frac{\omega^2}{4c^2}} \ dt = e^{-\frac{\omega^2}{4c^2}}\int_{-\infty}^{\infty}e^{-(ct - \frac{i\omega}{2c})^2} \ dt


=eω24c2ceu2 du=πeω24c2ceu2π du\displaystyle = \frac{e^{-\frac{\omega^2}{4c^2}}}{c}\int_{-\infty}^{\infty}e^{-u^2} \ du = \frac{\sqrt{\pi}e^{-\frac{\omega^2}{4c^2}}}{c}\int_{-\infty}^{\infty}\frac{e^{-u^2}}{\sqrt{\pi}} \ du


=πeω24c2c(1)=πeω24c2c\displaystyle = \frac{\sqrt{\pi}e^{-\frac{\omega^2}{4c^2}}}{c}(1) = \frac{\sqrt{\pi}e^{-\frac{\omega^2}{4c^2}}}{c}


which is just 1cF(ωc)\displaystyle \frac{1}{|c|}F\left(\frac{\omega}{c}\right)
Thanks 👍
I really appreciate it
 
Top