If it is \(\displaystyle x\to\pi^2\) then in the future please make it clear: x->pi^2. LOOK AT THIS1. find the limit of[FONT=MathJax_Math-italic]has[FONT=MathJax_Main]([/FONT][FONT=MathJax_Math-italic]x[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Math-italic]s[/FONT][FONT=MathJax_Math-italic]i[/FONT][FONT=MathJax_Math-italic]n[/FONT][FONT=MathJax_Math-italic]x[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Math-italic]c[/FONT][FONT=MathJax_Math-italic]o[/FONT][FONT=MathJax_Math-italic]s[/FONT][FONT=MathJax_Math-italic]x[/FONT][FONT=MathJax_Math-italic]s[/FONT][FONT=MathJax_Math-italic]i[/FONT][FONT=MathJax_Math-italic]n[/FONT][FONT=MathJax_Math-italic]x[/FONT][FONT=MathJax_Main]−[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Math-italic]c[/FONT][FONT=MathJax_Math-italic]o[/FONT][FONT=MathJax_Math-italic]s[/FONT][FONT=MathJax_Math-italic]x[/FONT]
[/FONT][FONT=MathJax_Math-italic]x[/FONT][FONT=MathJax_Main]→[/FONT][FONT=MathJax_Math-italic]π[/FONT][FONT=MathJax_Main]2[/FONT]
Okay, now you've changed the equation to be as follows:find the limit of
h(x)=sinx+cosx/sinx−2cosx
as x [FONT=MathJax_Main]→[/FONT][FONT=MathJax_Math-italic]π/[/FONT][FONT=MathJax_Main]2[/FONT]
find the limit ofash(x)=sinx+cosx/sinx−2cosx[FONT=MathJax_Math-italic]x[FONT=MathJax_Main]→[/FONT][FONT=MathJax_Math-italic]π/[/FONT][FONT=MathJax_Main]2[/FONT][/FONT]