Please Help.

Peachyyy

New member
Joined
May 27, 2005
Messages
15
Hi. I have been asked to prove that:

(0) + (.5) + (1) + ... + ((n/2)-1) = (((n/2)-1)(n-1))/2

Can someone please help??
 
Induction beginning with n=2 will work.

It's easiest just to simplify the LHS of the n=k+1 case and the desired RHS right down to show their equality.
 
I think you can use the fact that:
the nth term = n / 2
sum of 1st n terms = n(n+1) / 4

...and go from there.
 
Hello, Peachyyy!

I have been asked to prove that:

0+12+1++(n21)  =  12(n21)(n1)\displaystyle 0\,+\,\frac{1}{2}\,+\,1\,+\,\cdots\,+\,\left(\frac{n}{2}\,-\,1\right)\;=\;\frac{1}{2}\left(\frac{n}{2}\,-\,1\right)(n\,-\,1)
What a strangely-worded problem . . . it starts with n=2\displaystyle n\,=\,2
    \displaystyle \;\;and the answer could/should have been written: 14(n1)(n2)\displaystyle \,\frac{1}{4}(n\,-\,1)(n\,-\,2)

Add -12\displaystyle \frac{1}{2} to the beginning of the series
    \displaystyle \;\;and consider: S  =  12+0+12+1+32+2++(n21)\displaystyle \:S\;=\;-\frac{1}{2}\,+\,0\,+\,\frac{1}{2}\,+\,1\,+\,\frac{3}{2}\,+\,2\,+\,\cdots\,+\,\left(\frac{n}{2}\,-\,1\right)

This is an arithmetic series.
    \displaystyle \;\;It has:   \displaystyle \; first term, a=12,\displaystyle a\,=\,-\frac{1}{2},\: common difference, d=12,\displaystyle d\,=\,\frac{1}{2},\: and n\displaystyle \,n terms.


The sum of the first n\displaystyle n terms is: S  =  n2[2a+(n1)d]\displaystyle \:S\;=\;\frac{n}{2}[2a\,+\,(n\,-\,1)d]

    \displaystyle \;\;Hence, we have: S  =  n2[2(12)+(n1)12]  =  n4(n3)\displaystyle \:S\;=\;\frac{n}{2}\left[2\left(-\frac{1}{2}\right)\,+\,(n\,-\,1)\frac{1}{2}\right]\;=\;\frac{n}{4}(n\,-\,3)


Subtract -12\displaystyle \frac{1}{2} from this sum: n4(n3)(12)  =  14(n1)(n2)  \displaystyle \,\frac{n}{4}(n\,-\,3)\,-\,\left(-\frac{1}{2}\right) \;= \; \frac{1}{4}(n\,-\,1)(n\,-\,2)\; . . . There!
 
Top