I'm not sure what you mean by "limit or derivation". The problem asks you to find the limit and doing what the problem asks is always "practical"!
The first thing I would do is get rid of that exponent by taking the logarithm:
If \(\displaystyle y= (1+ e^x)^{1/x}\) then \(\displaystyle ln(y)= \frac{1}{x}(1+ e^x)\) so \(\displaystyle x ln(y)= 1+ e^x\).
Now the limit on the right side is 1+ 1= 2 while on the left the "x" term goes to 0. If the limit of ln(y) were finite, the limit on the left would be 0, not 2. So the limit of ln(y) cannot be any finite number. That doesn't necessarily mean that y does not have a finite limit. If the limit of ln(y) were \(\displaystyle -\infty\), the limit of y would be 0. As a check, when x= 0.1, \(\displaystyle (1+ e^x)^{1/x}= (1+ e^{0.1})^{10}= 1709.5...\).
No, that's not anywhere near 0 so the limit is not 0. The only other alternative is that lim y is infinity (does not exist).
I'm not sure why you substituted 1 for x in the binomial.
I got
\(\displaystyle \log_{x+e^x}y=\frac{1}{x}\\
\frac{ln(y)}{ln(x+e^x)}=\frac{1}{x}\\
ln(y)=\frac{1}{x}ln(x+e^x)\\
xln(y)=ln(x+e^x)\)
using your method.
Taking the lim_x->0+ on both sides, I get 0=ln1
Perhaps that means \(\displaystyle y \in \Re \)?
That is an accident/typo typed above. \(\displaystyle \ \ It \ \ should \ \ be \ \ if \ \ y \ \ = \ (x + e^x)^{1/x}.\)The first thing I would do is get rid of that exponent by taking the logarithm:
If \(\displaystyle \ y= (1+ e^x)^{1/x}\) then \(\displaystyle ln(y)= \frac{1}{x}(1+ e^x)\) so \(\displaystyle x ln(y)= 1+ e^x\).
Is the answer e^2? Correct
[TABLE="width: 256"]
[TR]
[TD="class: xl65, width: 64, align: right"]1
[/TD]
[TD="class: xl65, width: 64, align: right"][COLOR=#ffffff]..........[/COLOR]3.718282
[/TD]
[TD="class: xl65, width: 64, align: right"][COLOR=#ffffff]..................[/COLOR]-1
[/TD]
[TD="class: xl65, width: 64, align: right"]-1.58198
[/TD]
[/TR]
[TR]
[TD="class: xl65, align: right"]0.1[/TD]
[TD="class: xl65, align: right"]6.463778[/TD]
[TD="class: xl65, align: right"]-0.1[/TD]
[TD="class: xl65, align: right"][COLOR=#ffffff]...............[/COLOR]8.768361
[/TD]
[/TR]
[TR]
[TD="class: xl65, align: right"]0.01[/TD]
[TD="class: xl65, align: right"]7.280365[/TD]
[TD="class: xl65, align: right"]-0.01[/TD]
[TD="class: xl65, align: right"]7.502121
[/TD]
[/TR]
[TR]
[TD="class: xl65, align: right"]0.001[/TD]
[TD="class: xl65, align: right"]7.377994[/TD]
[TD="class: xl65, align: right"]-0.001[/TD]
[TD="class: xl65, align: right"]7.400162[/TD]
[/TR]
[TR]
[TD="class: xl65, align: right"]0.0001[/TD]
[TD="class: xl65, align: right"]7.387948[/TD]
[TD="class: xl65, align: right"]-0.0001[/TD]
[TD="class: xl65, align: right"]7.390165[/TD]
[/TR]
[TR]
[TD="class: xl65, align: right"]0.00001[/TD]
[TD="class: xl65, align: right"]7.388945[/TD]
[TD="class: xl65, align: right"]-0.00001[/TD]
[TD="class: xl65, align: right"]7.389167[/TD]
[/TR]
[TR]
[TD="class: xl65, align: right"]0.000001[/TD]
[TD="class: xl65, align: right"]7.389045[/TD]
[TD="class: xl65, align: right"]-1E-06[/TD]
[TD="class: xl65, align: right"]7.389067[/TD]
[/TR]
[/TABLE]